XMP Library 
XMP is a CUDA® accelerated(X) Multi-Precision library that enables batched multi-precision operations in CUDA.  
The API is designed around a handle.  A handle contains information necessary to execute operations.  This includes but is not limited to the device, the stream, and scratch pad memory.  A handle must be allocated for every device that a user will use.  The handle is passed into every API.
In order to expose more parallelism XMP uses a batched interface where multiple instances of an operation are performed in parallel across the GPU.  This allows the GPU to be fully utilized and achieve peak performance.  The base type is an array of fixed precision integers (xmpIntegers_t).  The number of integers in an array is referred to as its count and the size of each integer in bits is referred to as its precision.    
A number of other restrictions exist in this version of the library.  A complete list of restrictions is listed after every API call.  These restrictions may be relaxed in future releases.
The following is an API reference guide.
Asynchronous Execution
API calls are synchronous with respect to the host unless the asynchronous version of the API call is used.  Asynchronous APIs are named with an “Async” on the end of their name.  When using asynchronous APIs the user must ensure that all prior calls have completed execution by either calling a synchronous API call on the same handle or querying the handle for the stream and explicitly calling CUDA synchronization (see the CUDA Programming guide for more details).
Operators
This library implements operators which work on arrays of integers.  The output arrays must always have a count greater to or equal to the number of requested execution instances.  The count for input arrays can vary.  When the count of an input array is less than the number of instances then the array will be accessed in a round robin fashion across instances.  For example,  if the count of an input array is one then it is constant across all instances, if the count is two then the integer used will alternate between odd/even instances.
All pointers passed into operators can exist in host memory or device memory.  In order for asynchronous routines to execute asynchronously any host memory must be pinned to host memory (see the CUDA programming guide for more details).
Performance Considerations
The APIs provided below should be efficient on all hardware sm_20 and greater.  Maxwell performance in current releases of NVCC is poor due to compiler inefficiencies.  These inefficiencies have been resolved but will not be released until CUDA 8.0.  Until then we suggest compiling the library with the flag –DIMAD.  This will provided greater performance on Maxwell but will not achieve the highest level of performance.  
Performance at different sizes can vary significantly.  For maximum performance users should test multiple batch sizes and pick one that yields the best performance.
Data Types
XMP currently defines the following new data types.  They are described below:
xmpError_t:  An error code that is returned from API calls.  The possible error codes are as follows:
xmpErrorSuccess:  The API call was successful and no error was detected.
xmpErrorInvalidParameter: An invalid parameter was passed into an API call.
xmpErrorInvalidMalloc:  A system malloc failed (i.e. returned NULL).
xmpErrorInvalidCudaMalloc:  cudaMalloc failed.
xmpErrorInvalidCount:  An invalid count was passed into an API call.  For example, count was larger than the output array.
xmpErrorInvalidDevice:  An invalid CUDA device was detected.  This typically occurs when an integer array was allocated on a different device than the current handle.
xmpErrorInvalidFormat:  An invalid data format was encountered by a routine.  This typically means an integer array was never initialized using xmpIntegersImport or by another API call which sets the integer array.
xmpErrorInvalidPrecision:  There was a precision mismatch in an operand.  See the API call for restrictions on precision.
xmpErrorCuda:  an unspecified CUDA error has occurred.  Use cudaGetLastError() for more information.
xmpErrorUnsupported:  The user tried to perform an unsupported operation (see restrictions for the API call for more details).
xmpErrorUnspecified:  An unspecified error occurred.
xmpHandle_t:  A handle which helps control execution of operations.  All API calls take a handle as a parameter.  The handle is opaque to the user. 
xmpIntegers_t:   An array of large integers with constant sized precision.  The array is opaque to the user.
API Guide
const char* xmpGetErrorString(xmpError_t e)
Converts an error code into an error string.
Returns: 
A human readable error string for the error e.
Restrictions:
	None
xmpError_t xmpHandleCreate(xmpHandle_t *handle)
Allocates and initializes handle. The currently active device in CUDA is stored in handle and all future API calls on this handle will be performed on this device regardless of what the active CUDA device is set to.   
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  handle was NULL.
xmpErrorInvalidMalloc:  the system malloc routine returned NULL.
xmpErrorInvalidDevice:  the currently active device is not present or unsupported.
Restrictions:
	Handles can only be created on CUDA architecture SM_20 or greater.
xmpError_t xmpHandleCreateWithAllocators(xmpHandle_t *handle, xmpAllocFunc ha, xmpFreeFunc hf, xmpAllocFunc da, xmpFreeFunc df)
Allocates and initializes handle. The currently active device in CUDA is stored in handle and all future API calls on this handle will be performed on this device regardless of what the active CUDA device is set to.   
The host allocator is set to ha, the host deallocator is set to hf, the device allocator is set to da, and the device deallocator is set to df. If a parameter to this function is NULL then the default allocator or deallocator will be used for that function.  
xmpAllocFunc functions must take the form of void* func(size_t).  
xmpFreeFunc functions must take the form of void func(void*).  
If the xmpAllocFunc returns 0 then an error XMP_ERROR_INVALID_MALLOC or XMP_ERROR_INVALID_CUDA_MALLOC will be returned by the calling API call.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  handle was NULL.
xmpErrorInvalidMalloc:  the system malloc routine returned NULL.
xmpErrorInvalidDevice:  the currently active device is not present or unsupported.
Restrictions:
	Handles can only be created on CUDA architecture SM_30 or greater.

xmpError_t xmpHandleDestroy(xmpHandle_t handle)
Deallocates all memory associated with the handle.  This does not include memory allocated in other API calls like xmpIntegersCreate.  After this point the handle is no longer considered valid.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
Restrictions:
	None
xmpError_t xmpHandleGetMemoryFunctions(xmpHandle_t handle, xmpAllocFunc *ha, xmpFreeFunc *hf, xmpAllocFunc *da, xmpFreeFunc *df);
Sets ha to the host allocation function, hf to the host deallocation function, da to the device allocation function, and df to the device deallocation function.  If NULL is passed into any parameter than that function will not be returned.  
xmpAllocFunc functions must take the form of void* func(size_t).  
xmpFreeFunc functions must take the form of void func(void*). 
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
Restrictions:  
	None
	
xmpError_t xmpHandleSetStream(xmpHandle_t handle, cudaStream_t s)
	Sets the execution stream for handle to the stream passed in s.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
	Restrictions:
The device that s was allocated on must match the device associated with handle.
xmpError_t xmpHandleGetStream(xmpHandle_t handle, cudaStream_t *s)
Sets s to the stream associated with handle.  
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParamter: s was NULL.
	Restrictions:
None
xmpError_t xmpHandleGetDevice(xmpHandle_t handle, int32_t *d)
	Sets d to the device associated with handle.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParamter: d was NULL.
	Restrictions:
None
xmpError_t xmpIntegersCreate(xmpHandle_t handle, xmpIntegers_t *x, uint32_t p, uint32_t c)
Allocates an array with of integers x. Where count(x)=c and precision(x)= p.  Memory is allocated on the device associated with handle.  The integers are unsigned and can store a value between [0,2^precision(x)).  
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParamter: x was NULL
xmpErrorInvalidMalloc:  the system malloc routine returned NULL.
xmpErrorInvalidCudaMalloc:  cudaMalloc returned an error.
xmpErrorUnsupported: The precision was not divisible by 32.
Restrictions:
	p must be divisible by 32.

xmpError_t xmpIntegersDestroy(xmpHandle_t handle, xmpIntegers_t x)
Frees the memory for the array of integers stored in x.  After this call x is considered invalid.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
Restrictions
None
xmpError_t xmpIntegersGetPrecision(xmpHandle_t handle, xmpIntegers_t x, uint32_t *p)
	Sets p to the precision of integers in x.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  p was NULL.
	Restrictions:
None
xmpError_t xmpIntegersGetCount(xmpHandle_t h, xmpIntegers_t x, uint32_t *c)
	Sets c to the count of integers in x.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  c was NULL.
	Restrictions:
None
Data Movement Routines
	The following describes the data movement routines which can move data into and out of the library.  All pointers passed into these routines can exist in host memory or device memory.  In order for asynchronous routines to execute asynchronously any host memory must be pinned to host memory (see the CUDA programming guide for more details).
xmpError_t xmpIntegersImport(xmpHandle_t handle, xmpIntegers_t output, uint32_t words, int32_t order, size_t size, int32_t endian, uint32_t nails, void* input, uint32_t count)
xmpError_t xmpIntegersImportAsync(xmpHandle_t handle, xmpIntegers_t output, uint32_t words, int32_t order, size_t size, int32_t endian, uint32_t nails, void* input, , uint32_t count)
Set output from an array of word data in input.   The parameters specify the format of the word data.  count is the number of integers, words is the number of words in each integer.  order can be -1 for least significant words first and 1 for most significant words first.  size is the size of each word in bytes and endian specifies the endianess of each word (-1 little endian, 0 host native, and 1 big endian).  The most significant nails bit of each word are set to zero, this can be 0 for full words. 
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  input was NULL, count was invalid, size was invalid, order was invalid, words was invalid, or endian was invalid.
xmpErrorInvalidPrecision:  the precision of out is not equal to words*size
xmpErrorInvalidDevice:  the device associated with handle and the device associated with output do not match.
Restrictions
The device associated with handle must be the same device that was associated with output at allocation.  size must be 1, 2, 4, or 8. 
xmpError_t xmpIntegersExport(xmpHandle_t handle, void* output, uint32_t *words, int32_t order, size_t size, int32_t endian, uint32_t nails, xmpIntegers input, uint32_t count)
xmpError_t xmpIntegersExportAsync(xmpHandle_t handle, void* output, uint32_t words, int32_t order, size_t size, int32_t endian, uint32_t nails, xmpIntegers input, uint32_t count)
Set an array of word data output from input.   The parameters specify the format of the word data.  count is the number of integers.  order can be -1 for least significant words first and 1 for most significant words first.  size is the size of each word in bytes and endian specifies the endianess of each word (-1 little endian, 0 host native, and 1 big endian).  The most significant nails bit of each word are ignored set to zero, this can be 0 for full words. If words is not equal to NULL then it will be set to the number of words written.  
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  input was NULL, count was invalid, size was invalid, order was invalid, words was invalid, or endian was invalid.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with output do not match.
Restrictions
The device associated with handle must be the same device that was associated with input at allocation. size must be 1, 2, 4, or 8.

xmpError_t xmpIntegersSet(xmpHandle_t handle, xmpIntegers_t output, xmpIntegers_t input, uint32_t count)
xmpError_t xmpIntegersSetAsync(xmpHandle_t handle, xmpIntegers_t output, xmpIntegers_t input, uint32_t count)
Copies count integers from array input to array output.  The buffers input and output do not need to reside on the same GPU.  
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with one of output or input do not match.
xmpErrorInvalidFormat:  an invalid format was encountered.  This means that input was uninitialized.
xmpErrorInvalidPrecision:  the precision of input and output do not match.
xmpErrorInvalidCount:  the count of input or output is less than count.
Restrictions
The device associated with the handle must be the same device that was used to allocate either input or output.  
The precision of input and output must match.

Math Operators

xmpError_t xmpIntegersAdd(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersAddAsync(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a+b for the instance integers in the arrays a and b.  If (a+b)>2^precision(c) the result wraps such that c=(a+b)-2^precision(c).
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, or b do not match.
xmpErrorInvalidCount:  The count(c) is less than instances.
xmpErrorInvalidPrecision:  The precision of c is less than the maximum precision of a and b.
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the maximum precision of a and b.
count(c) must be greater than instances.
xmpError_t xmpIntegersSub(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersSubAsync(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a-b for the instance integers in the arrays a and b.  If a<b the result wraps such that c=a-b+2^precision(c).
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, or b do not match.
xmpErrorInvalidCount:  The count(c) is less than instances.
xmpErrorInvalidPrecision:  The precision of c is less than the maximum precision of a and b.
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the maximum precision of a and b.
count(c) must be greater than instances.

xmpError_t xmpIntegersMul(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersMulAsync(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a*b for the instance integers in the arrays a and b.  If precision(a)+precision(b)>precision(c) only the lower precision(c) bits of the result are returned.

Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, or b do not match.
xmpErrorInvalidCount:  The count(c) is less than instances.
xmpErrorInvalidPrecision:  The precision of c is less than the maximum precision of a and b.
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the maximum precision of a and b.
count(c) must be greater than instances.
xmpError_t xmpIntegersDiv(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersDivAsync(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=floor(a/b) for the instance integers in the arrays a and b
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, or b do not match.
xmpErrorInvalidCount:  The count(c) is less than instances.
xmpErrorInvalidPrecision:  The precision(c) is less than the precision(a).
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the precision of a.
count(c) must be greater than instances.
xmpError_t xmpIntegersMod(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersModAsync(xmpHandle_t handle, xmpIntegers_t c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a%b for the instance integers in the arrays a and b
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, or b do not match.
xmpErrorInvalidCount:  The count(c) is less than instances.
xmpErrorInvalidPrecision:  The precision(c) is less than the precision(b).
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the precision of b.
count(c) must be greater than instances.
xmpError_t xmpIntegersDivMod(xmpHandle_t handle, xmpIntegers_t c, xmpIntegers_t d, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersDivModAsync(xmpHandle_t handle, xmpIntegers_t c, xmpIntegers_t d, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=floor(a/b) and d=a%b for the instance integers in the arrays a and b
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of c, a, b, or d do not match.
xmpErrorInvalidCount:  The count(c) or count(d) is less than instances.
xmpErrorInvalidPrecision:  The precision(c) is less than the precision(a) or the precision(d) is less than the precision(b).
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
The precision of c must be greater than or equal to the precision of a.
The precision of d must be greater than or equal to the precision of b.
count(c) and count(d) must be greater than instances.

xmpError_t xmpIntegersPowm(xmpHandle_t handle, xmpIntegers_t o, const xmpIntegers_t b, const xmpIntegers_t e, const xmpIntegers_t m, uint32_t instances)
xmpError_t xmpIntegersPowmAsync(xmpHandle_t handle, xmpIntegers_t o, const xmpIntegers_t b, const xmpIntegers_t e, const xmpIntegers_t m, uint32_t instances)
Computes o=b^e % m for the instance integers in the arrays o,b,e, and m.  count(o) must be greater than instances.  Only odd moduli are supported if a modulus is even then the return value is undefined. 
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of o, b, m, or e do not match.
xmpErrorInvalidCount:  The count(o) is less than instances.
xmpErrorInvalidPrecision:  The precision of o, a and m do not match.
xmpErrorUnsupported: an unsupported combination of count or precision was detected.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  The precision of all o, a and m must match.  The modulus must be odd.
Bit and Logical Operators
xmpError_t xmpIntegersCmp(xmpHandle_t handle, int32_t *c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersCmpAsync(xmpHandle_t handle, int32_t *c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=cmp(a,b) for the instance integers in the arrays a and b.  Where cmp returns -1 if a<b, +1 if b>a, and 0 if a==b.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of a or b do not match.
Restrictions
The device associated with handle must be the same device associated with all input arrays.  

xmpError_t xmpIntegersPopc(xmpHandle_t handle, uint32_t *c, const xmpIntegers_t a, uint32_t instances)
xmpError_t xmpIntegersPopcAsync(xmpHandle_t handle, uint32_t *c, const xmpIntegers_t a, uint32_t instances)
Computes c=popc(a) for the instances integers in the array a.  Where popc returns the number of set bits.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidCount:  count(a) is less than instances.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of a or b do not match.
Restrictions
The device associated with handle must be the same device associated with all input arrays.  
xmpError_t xmpIntegersIor(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersIorAsync(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a|b for the instances integers in the arrays a and b.  Where | is the bitwise inclusive-or operation.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidCount:  the count(c) is less than instances.
xmpErrorInvalidPrecision: the precision(c) is less than the max precision of a and b.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of a or b do not match.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
xmpError_t xmpIntegersXor(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersXorAsync(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a^b for the instances integers in the arrays a and b.  Where ^ is the bitwise exclusive-or operation.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidCount:  the count(c) is less than instances.
xmpErrorInvalidPrecision: the precision(c) is less than the max precision of a and b.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of a or b do not match.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
xmpError_t xmpIntegersAnd(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
xmpError_t xmpIntegersAndAsync(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const xmpIntegers_t b, uint32_t instances)
Computes c=a&b for the instances integers in the arrays a and b.  Where & is the bitwise and operation.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidCount:  the count(c) is less than instances.
xmpErrorInvalidPrecision: the precision(c) is less than the max precision of a and b.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with any of a or b do not match.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
xmpError_t xmpIntegersNot(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, uint32_t instances)
xmpError_t xmpIntegersNotAsync(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, uint32_t instances)
Computes c=!a for the instances integers in the array a.  Where ! is the bitwise not operation.
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidCount:  the count(c) is less than instances.
xmpErrorInvalidPrecision: the precision(c) is less than the max precision of a.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with a do not match.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  
xmpError_t xmpIntegersShf(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const int32_t* shift, const uint32_t shift_count, uint32_t instances)
xmpError_t xmpIntegersShfAsync(xmpHandle_t handle, xmpIntegers c, const xmpIntegers_t a, const int32_t* sh, const uint32_t sh_count, uint32_t instances)
Computes c=shift(a,sh) for the instances integers in the array a.  Where shift(a,sh) shifts the bits of a left or right based on sh.  If sh is > 0 then a is shifted left sh bits otherwise a is shifted right sh bits.  If sh_count < instances then elements of sh are repeated in a round-robin fashion. 
Returns:
xmpErrorSuccess:  no errors were detected.
xmpErrorCuda:  a CUDA error was returned.
xmpErrorInvalidParameter:  sh is NULL
xmpErrorInvalidCount:  the count(c) is less than instances.
xmpErrorInvalidDevice:  the device associated with handle and the device associated with a do not match.
Restrictions
The device associated with handle must be the same device associated with all input and output arrays.  

Example Program
#include "xmp.h"
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime_api.h>

#define XMP_CHECK_ERROR(fun) \
{                             \
  xmpError_t error=fun;     \
  if(error!=xmpErrorSuccess){ \
    if(error==xmpErrorCuda)   \
      printf("CUDA Error %s, %s:%d\n",cudaGetErrorString(cudaGetLastError()),__FILE__,__LINE__); \
    else  \
      printf("XMP Error %s, %s:%d\n",xmpGetErrorString(error),__FILE__,__LINE__); \
    exit(EXIT_FAILURE); \
  } \
}
int main() {
  int i,w;
  int N=10000;
  int bits=1024;
  xmpIntegers_t base, mod, exp, out;
  uint32_t *b,*m,*e,*o;
  uint32_t limbs=bits/8/sizeof(uint32_t);

  size_t bytes=N*bits/8;
  b=(uint32_t*)malloc(bytes);
  o=(uint32_t*)malloc(bytes);
  m=(uint32_t*)malloc(bits/8);
  e=(uint32_t*)malloc(bits/8);

  xmpHandle_t handle;

  //allocate handle
  XMP_CHECK_ERROR(xmpHandleCreate(&handle));

  //allocate integers
  XMP_CHECK_ERROR(xmpIntegersCreate(handle,&base,bits,N));
  XMP_CHECK_ERROR(xmpIntegersCreate(handle,&out,bits,N));
  XMP_CHECK_ERROR(xmpIntegersCreate(handle,&exp,bits,1));
  XMP_CHECK_ERROR(xmpIntegersCreate(handle,&mod,bits,1));

  //initialize base, exp, and mod
  for(i=0;i<N;i++) {
    for(w=0;w<limbs;w++) {
      b[i*limbs+w]=rand();
    }
  }

  for(w=0;w<limbs;w++) {
    m[w]=rand();
    e[w]=rand();
  }
  //make sure modulus is odd
  m[0]|=1;  

  //import
  XMP_CHECK_ERROR(xmpIntegersImport(handle,base,N,limbs,-1,sizeof(uint32_t),0,0,b));
  XMP_CHECK_ERROR(xmpIntegersImport(handle,exp,1,limbs,-1,sizeof(uint32_t),0,0,e));
  XMP_CHECK_ERROR(xmpIntegersImport(handle,mod,1,limbs,-1,sizeof(uint32_t),0,0,m));
  
  //call powm
  XMP_CHECK_ERROR(xmpIntegersPowm(handle,out,base,exp,mod,N));

  //export
  XMP_CHECK_ERROR(xmpIntegersExport(handle,o,N,&limbs,-1,sizeof(uint32_t),0,0,out));
  
  //use results here

  //free integers
  XMP_CHECK_ERROR(xmpIntegersDestroy(handle,base));
  XMP_CHECK_ERROR(xmpIntegersDestroy(handle,out));
  XMP_CHECK_ERROR(xmpIntegersDestroy(handle,exp));
  XMP_CHECK_ERROR(xmpIntegersDestroy(handle,mod));

  //free handle
  XMP_CHECK_ERROR(xmpHandleDestroy(handle));

  free(b);
  free(o);
  free(m);
  free(e);

  printf("done\n");
  return 0;
}
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