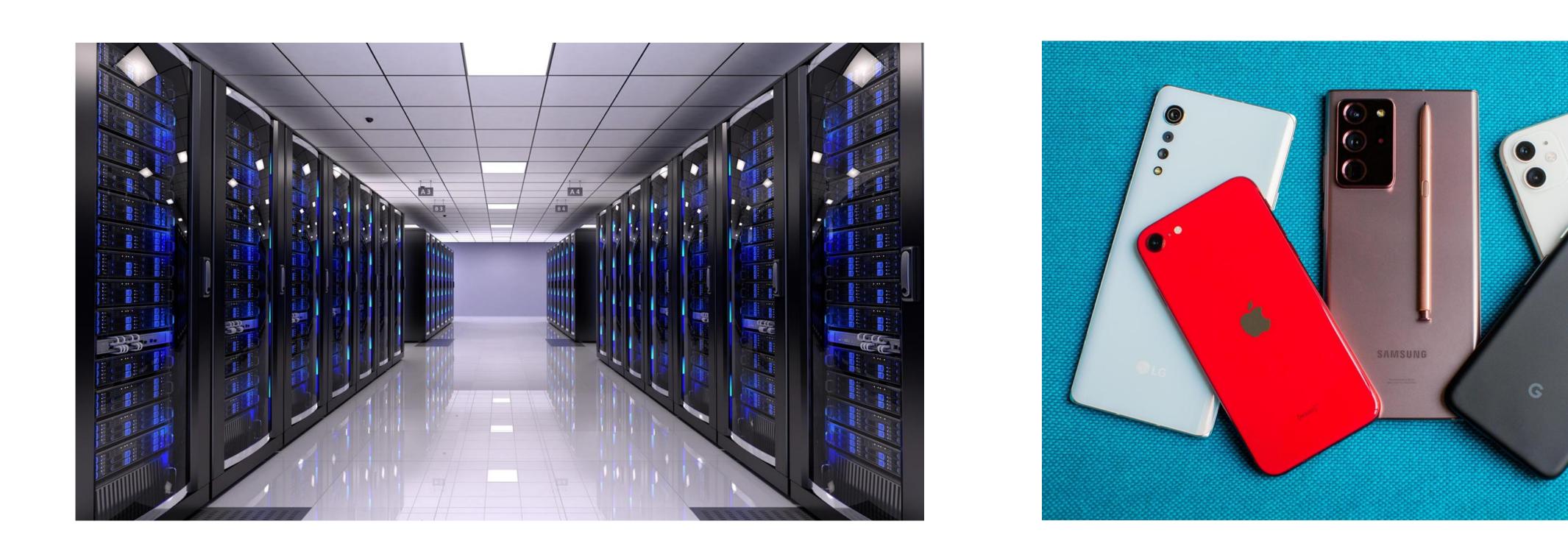
Towards Efficient and Reliable Deep Learning - Research Insights

Hongxu (Danny) Yin Senior Research Scientist, NVIDIA Research CVPR'23 Tutorial on Full-stack GPU Based Acceleration of Neural Networks

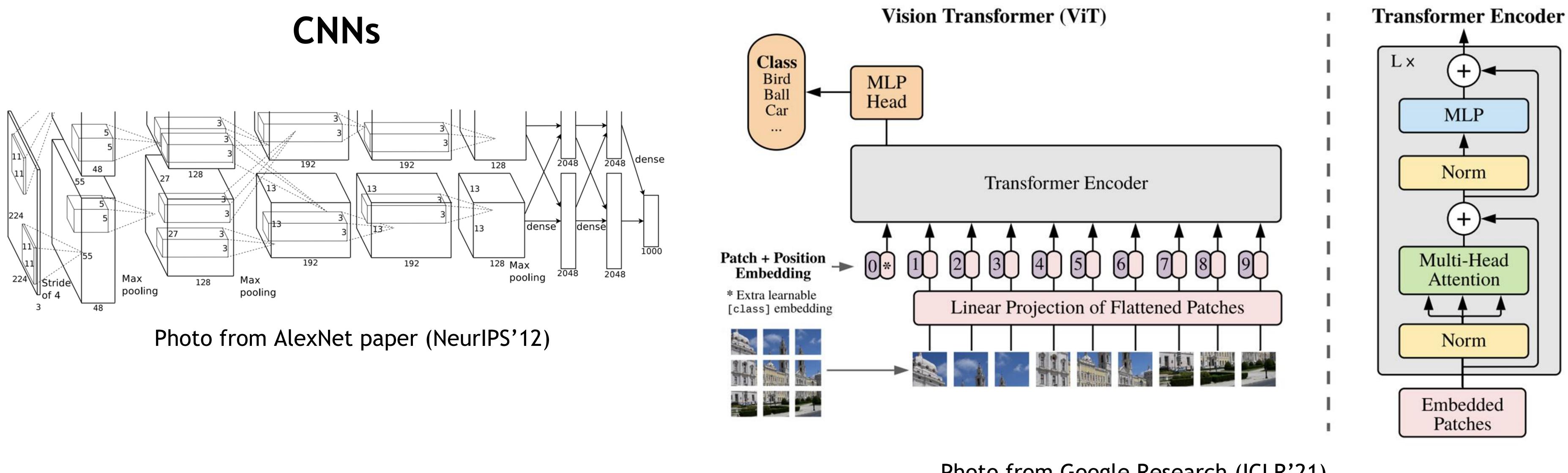
Pervasive Usage of Deep Learning Models

Efficient & Reliable Deep Learning



Understanding Networks Better!

(photos from web)



Evolution of Deep Learning (e.g., Computer Vision)

Transformers

Photo from Google Research (ICLR'21)

Understanding DNNs: From CNNs into Transformers

CNNs

ViT

NViT (CVPR'23)

SmoothQuant (ICML'23)

CNNs

ViT/LLM

Network Efficiency

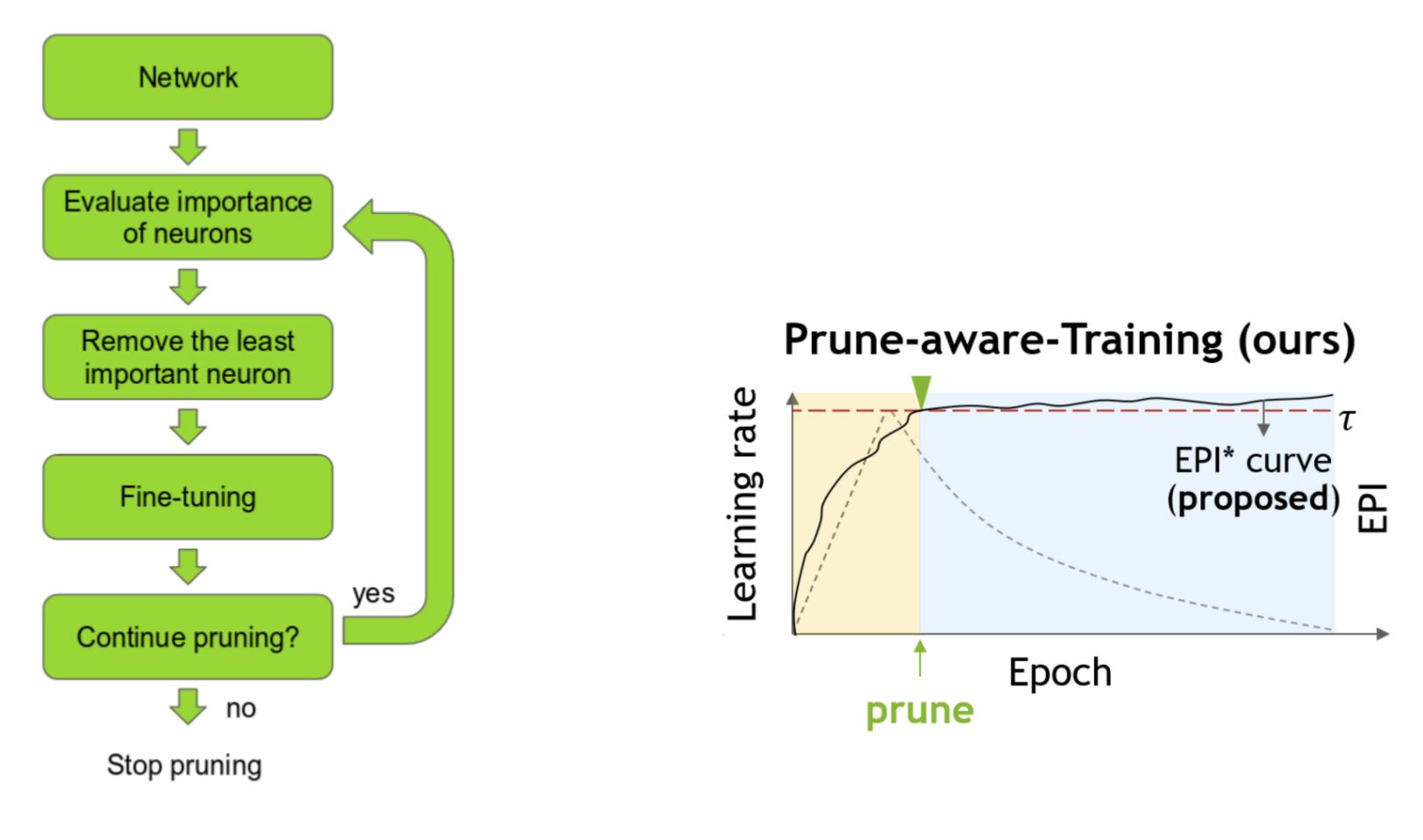
NAS, Pruning, Dynamic Inference, Quant, etc. (CVPR'19, ICLRW'29, CVPR'22, ECCV'22, etc.)

A-ViT'22 (CVPR'22 Oral)

Data Efficiency & Security

DeepInversion (CVPR'20 Oral) GradInversion (CVPR'21)

GradViT (CVPR'22)



a) Post-training

(CVPR'19)

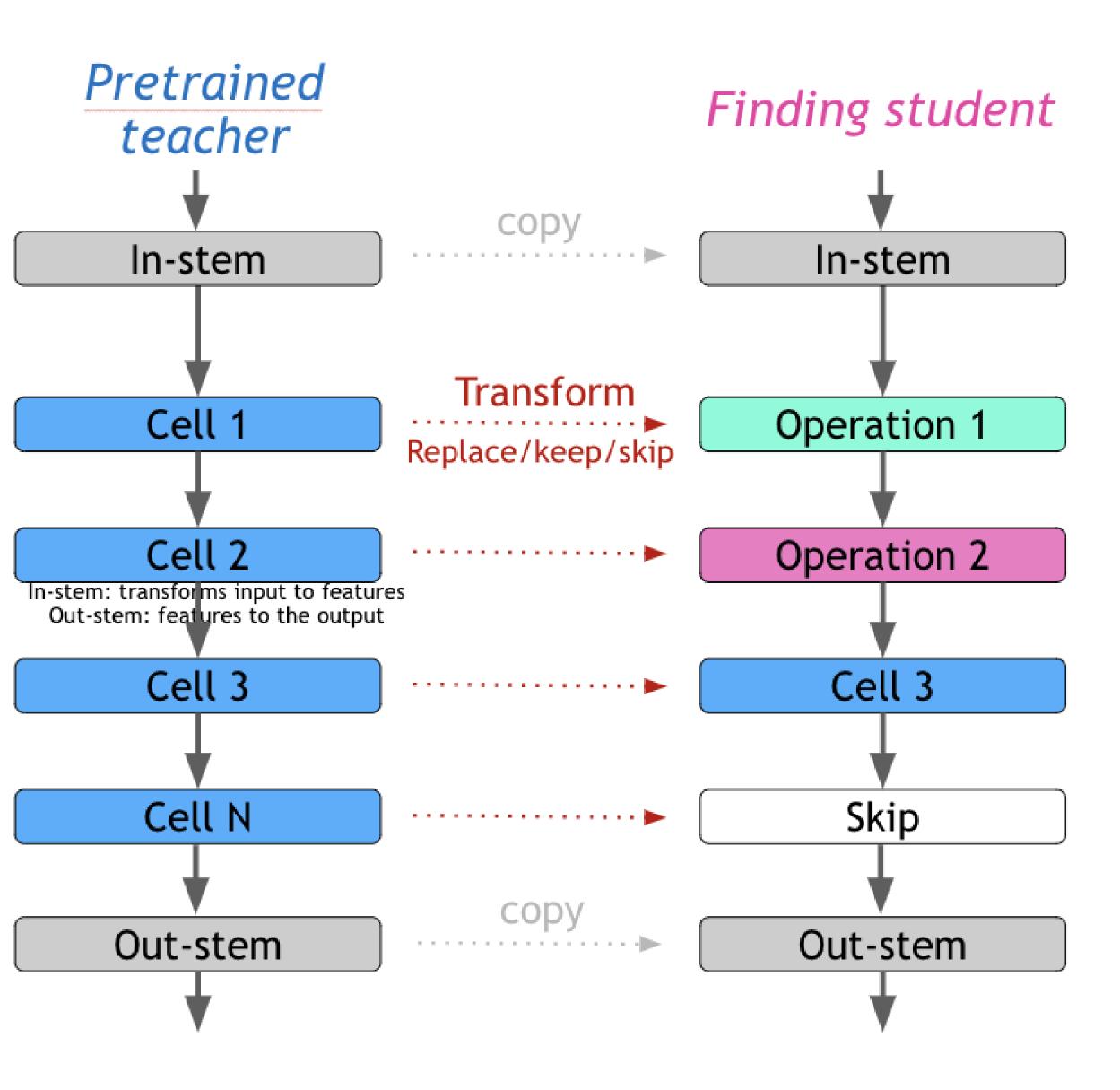
Filter pruning

- a) Molchanov, Mallya, Tyree, Irui, & Kautz, Importance estimation for neural network pruning, CVPR'19
- Shen, Molchanov, Yin, Jose, When to prune?, CVPR'22 b)
- Molchanov*, Hall*, Yin, Kautz, Fusi, Vahdat, LANA: Latency-aware network adaptation, ECCV'22 C)

Making CNNs Efficient on Hardware

b) During-training

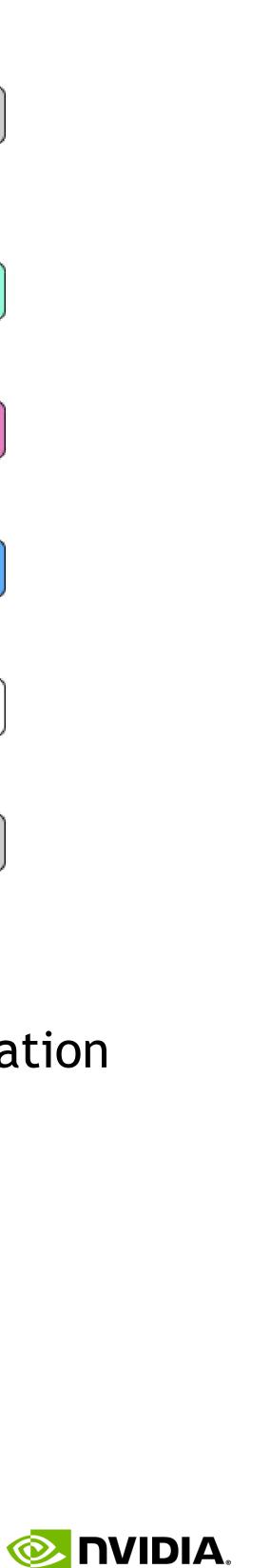
(CVPR'22)

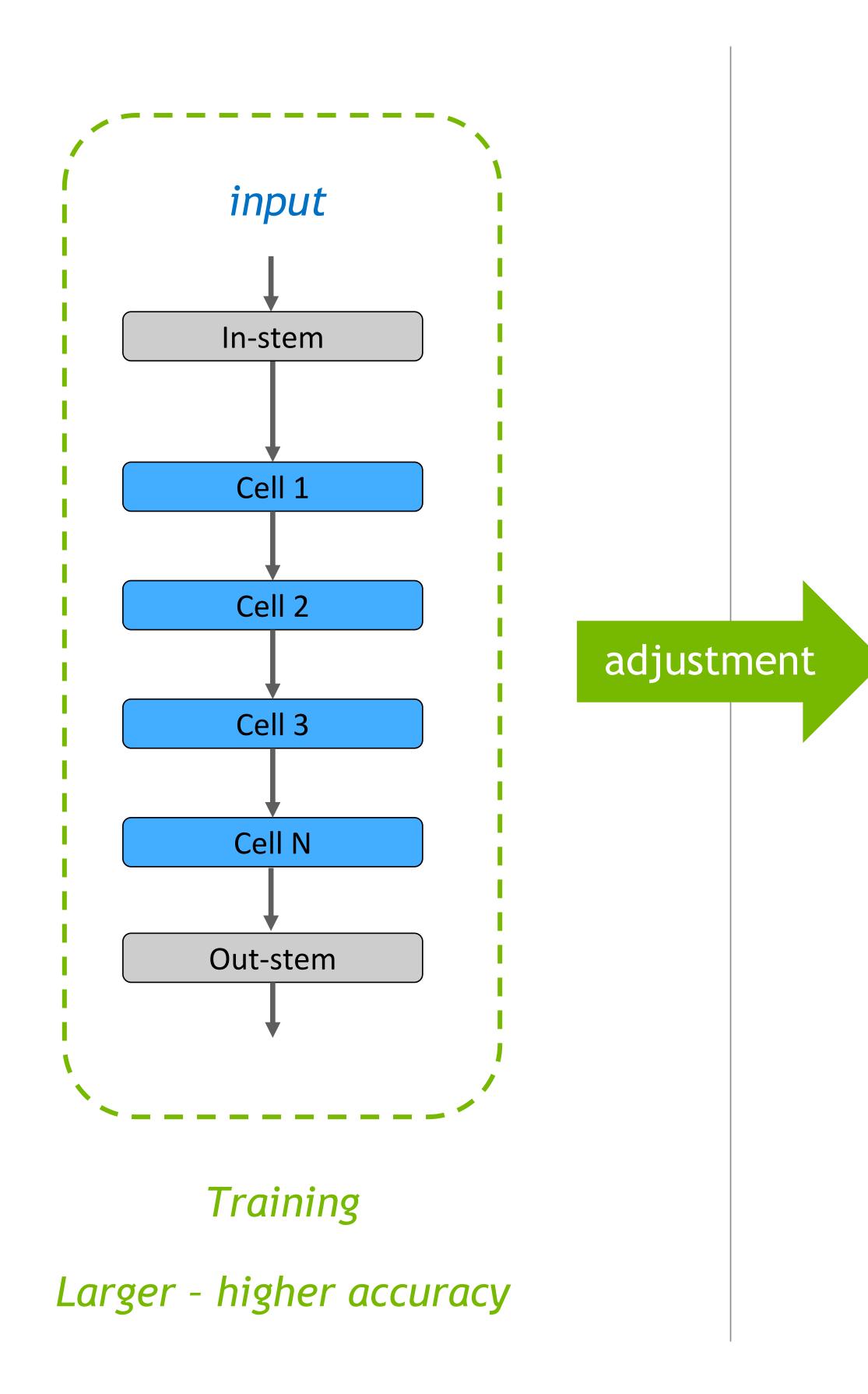


c) LANA - Latency-aware Network Adaptation

(ECCV'22)

Network adaptation





LANA - Latency-aware Network Acceleration

GPU type 1, latency < a ms GPU type 2, latency < b ms CPU type 1, latency < c ms CPU type 2, latency < d ms Accelerator type 1, latency < f ms

Inference

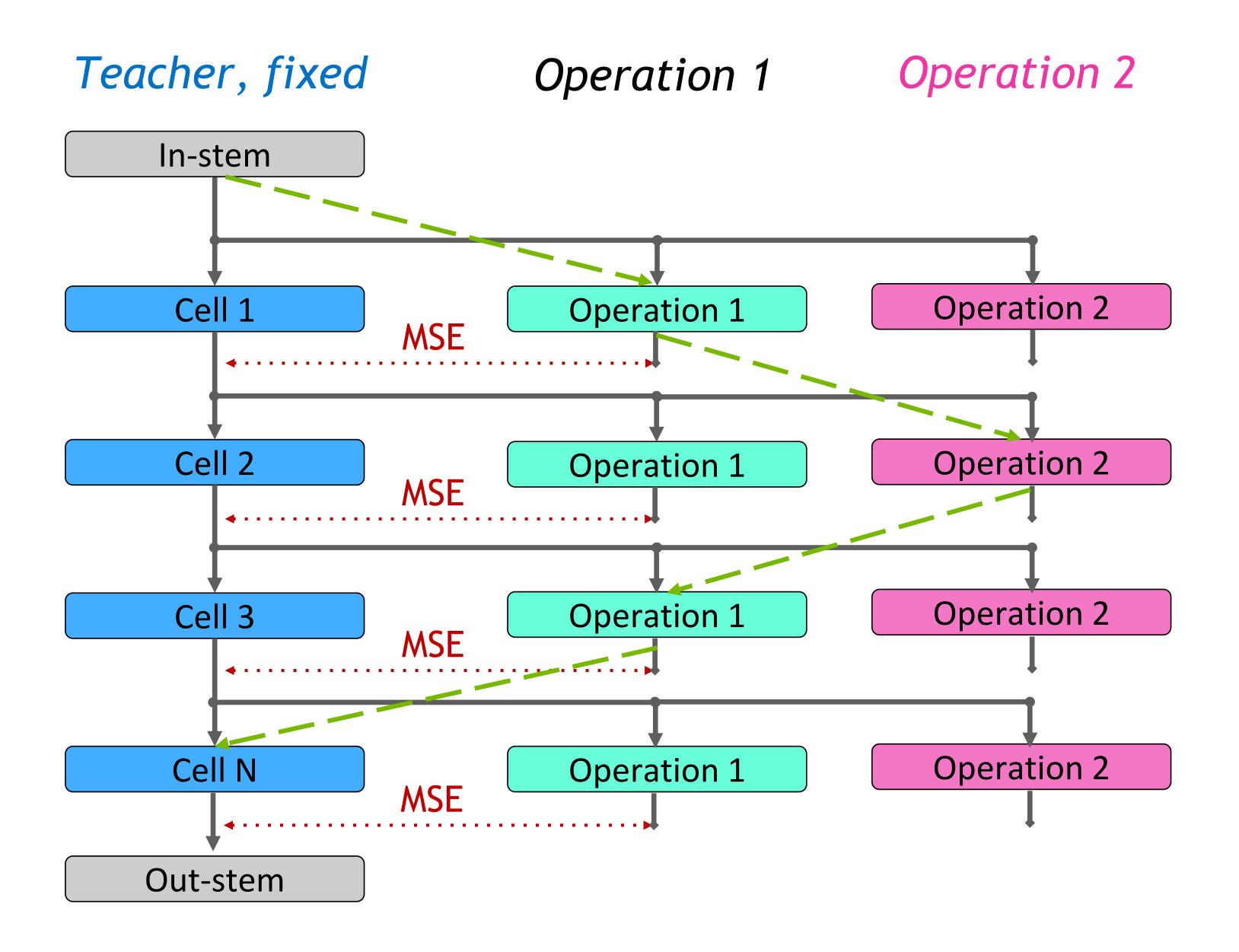
Varying platform, budgets

Pruning, NAS, quantization

- Original/similar arch.
- Slow and computation intensive

Our hypothesis:

Train-One-Large-Swap-Faster



Molchanov, Hall, Yin, Kautz, Fusi, Vahdat, LANA: Latency-aware network adaptation, ECCV'22

LANA - Latency-aware Network Acceleration Train One Large, Swap Faster

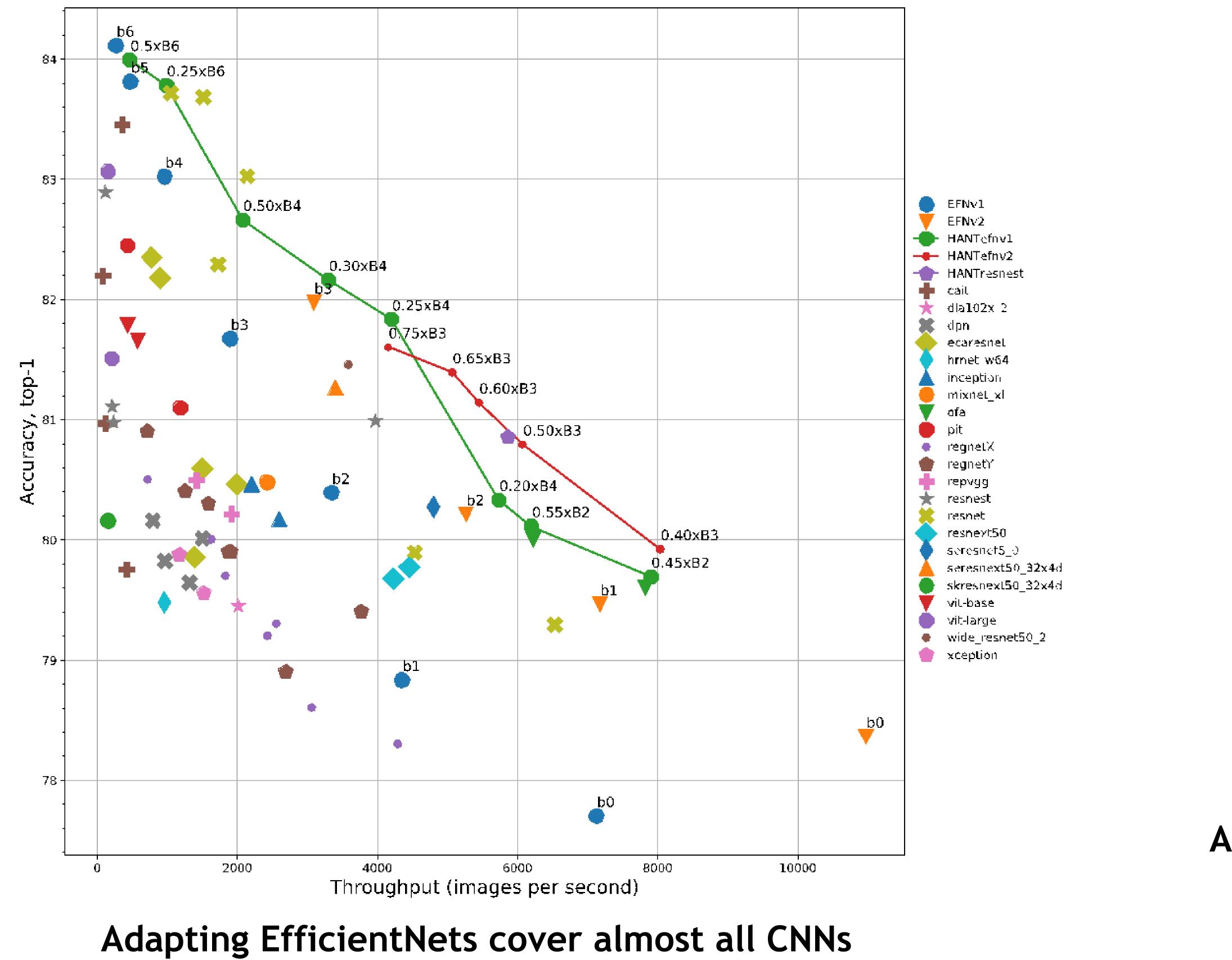
Training one large model - use as teacher (once, higher accuracy)

Preparing ops via distillation (parallelable, one epoch)

Combinatory problem (solvable in CPU seconds)

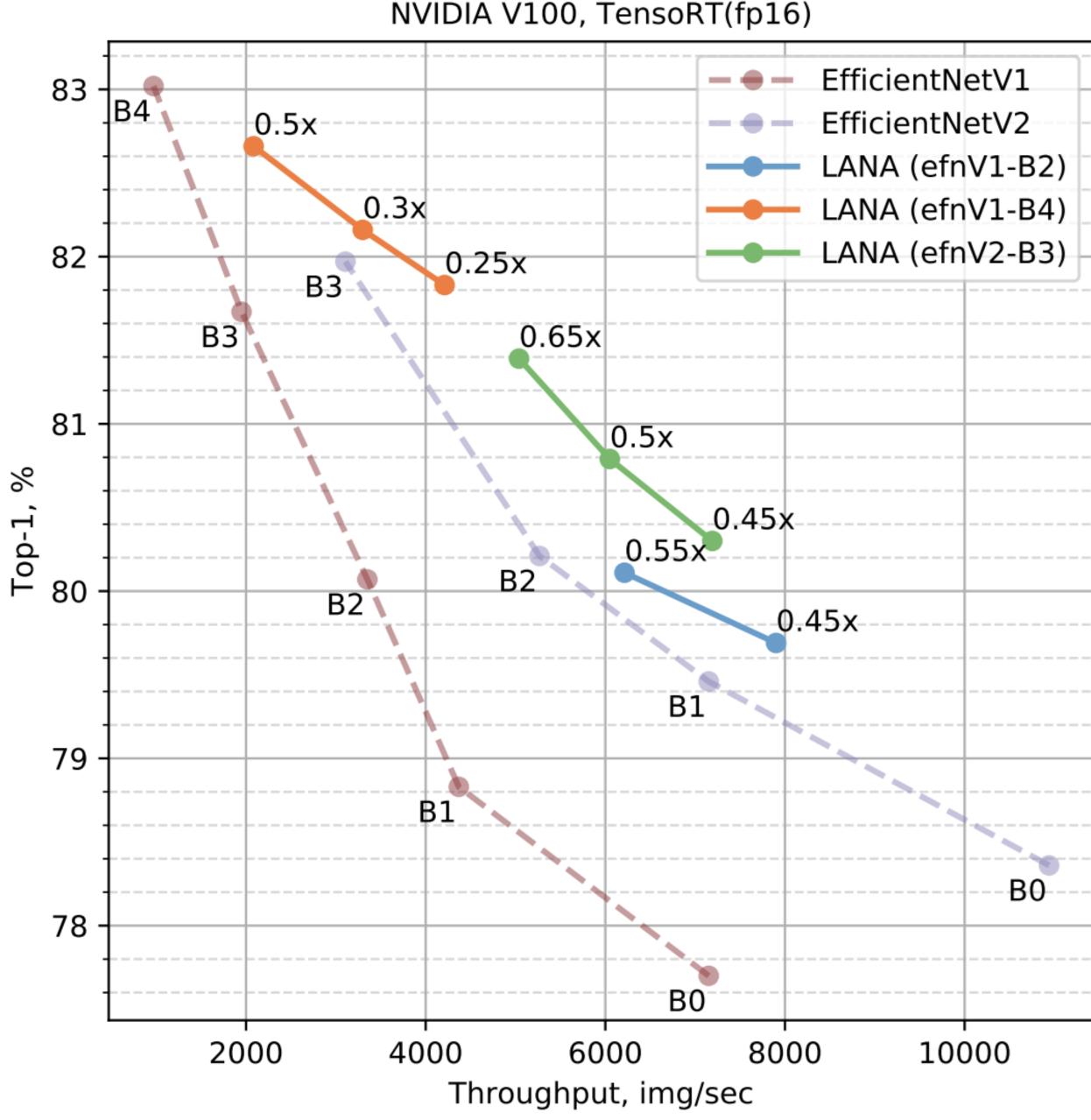
Quick finetuning (per hardware-latency)

ImageNet Results - Pareto Front



(30+ SOTAs from TIMM)

%



NVIDIA V100, TensoRT(fp16)

Adapting larger better than smaller from scratch

How about Vision Transformers (ViTs)

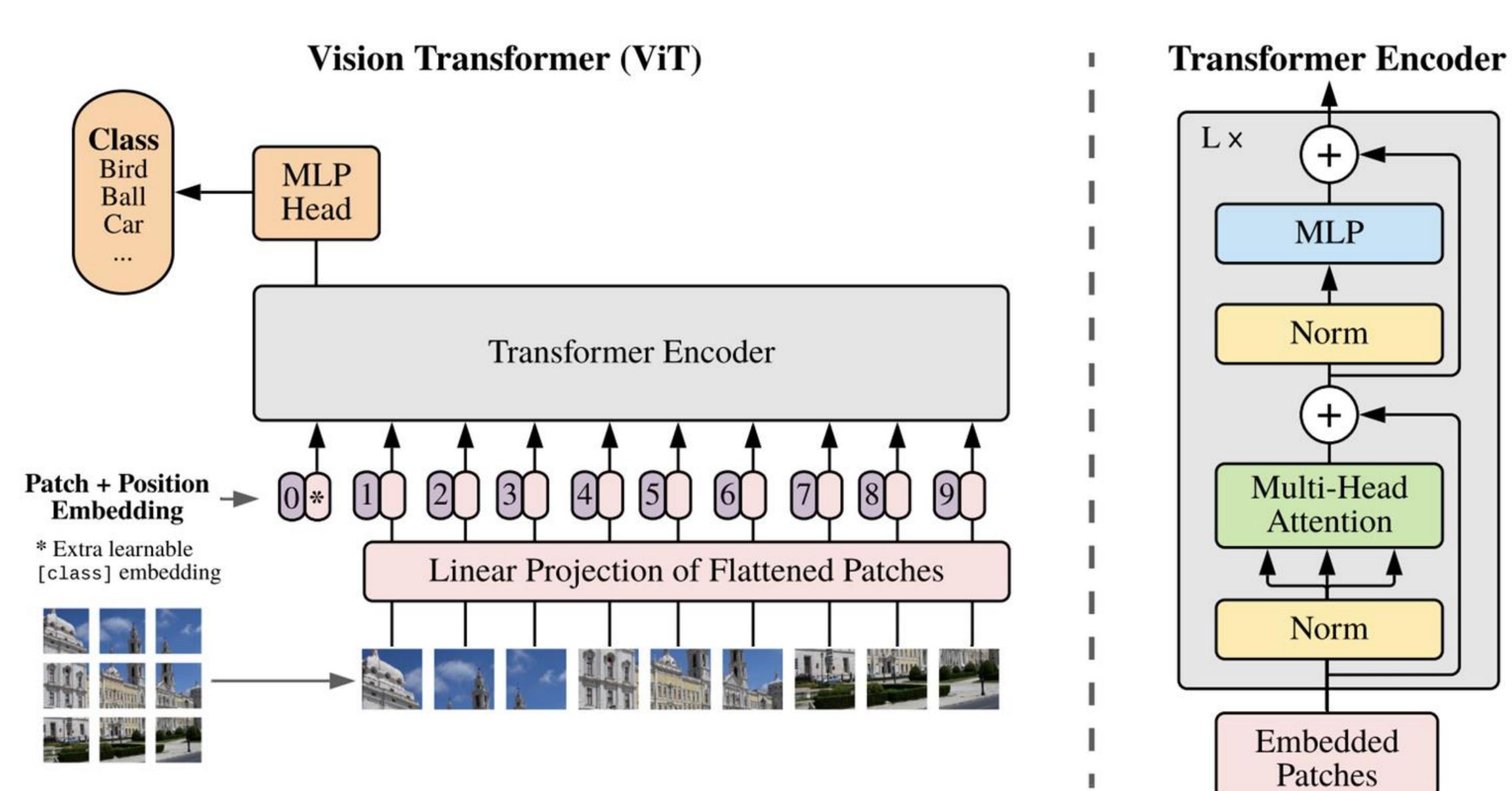


Photo from Google Research (ICLR'21)

• Pros

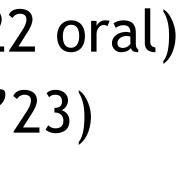
- **Stronger** representation ability
- Achieving higher accuracy
- Large data
- **Unified** structure

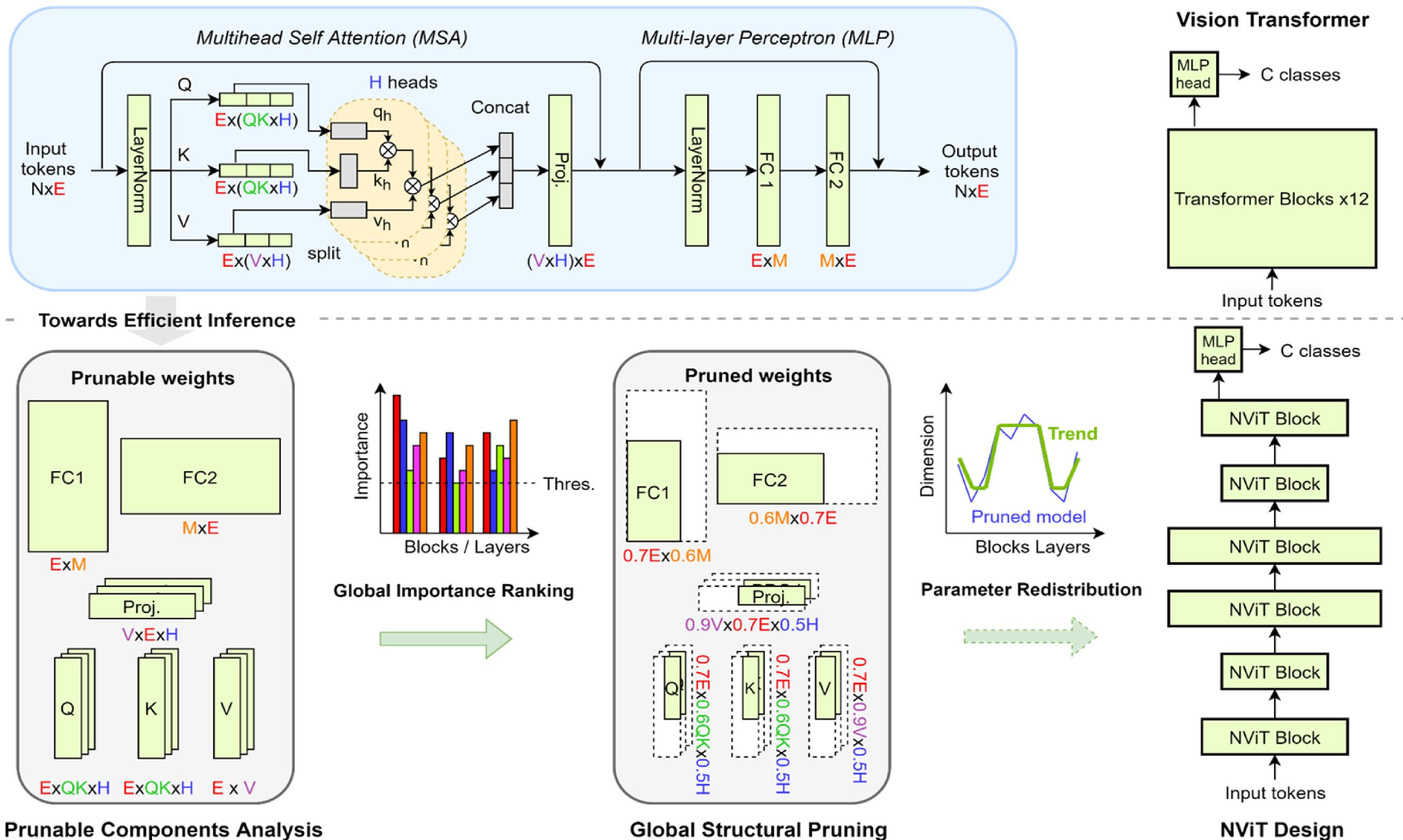
Cons

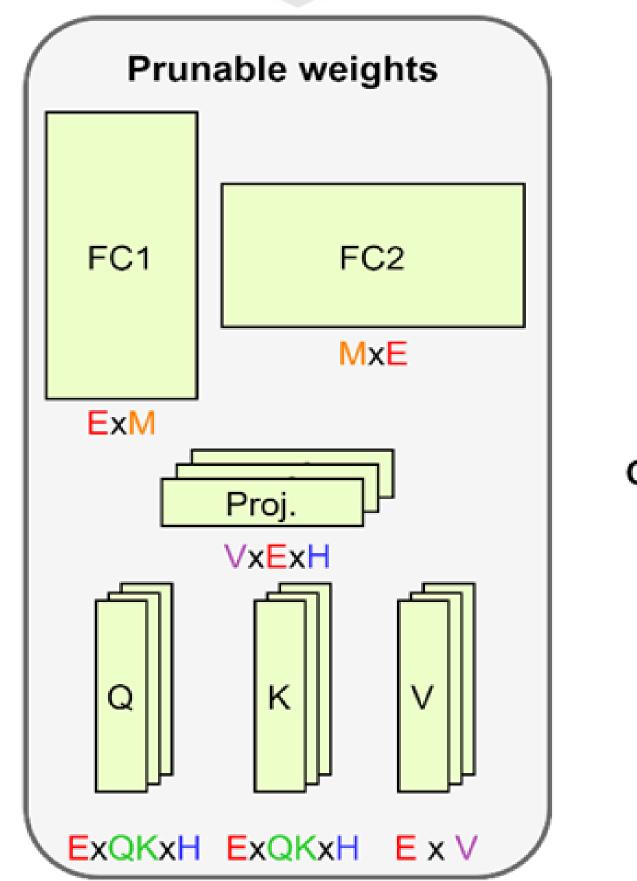
- Lacks inductive bias
- Data hungry
- More parameters and lower throughput

• This talk: Make ViTs Fast

- Compression (NViT, CVPR'23)
- Adaptive Inference (A-ViT, CVPR'22 oral)
- Quantization (SmoothQuant, ICML'23)





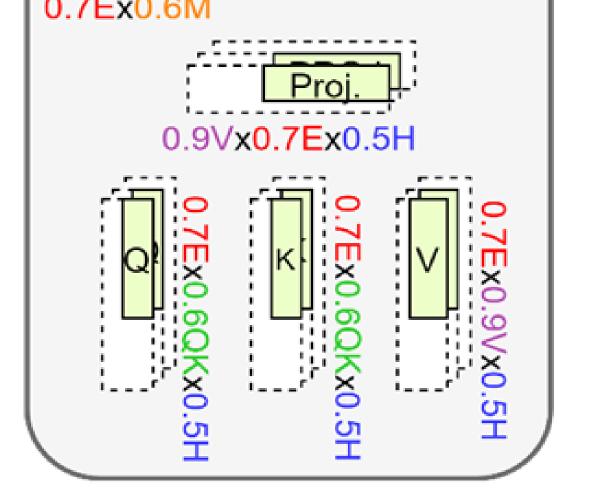


Prunable Components Analysis

. Global, Structural pruning of all paremeter across all ViT layers, in latency-aware manner

Yang, Yin, Molchanov, Li, & Kautz, NViT: Vision Transformer Compression and Parameter Redistribution, CVPR'23

NViT - Pruning & Parameter Redistribution



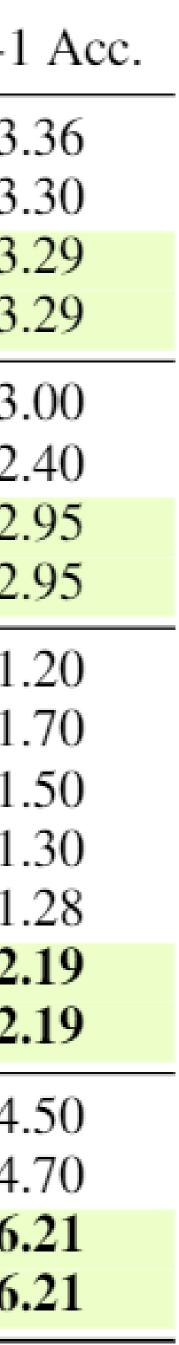
Global Structural Pruning

Detailed performance (ImageN

- Lossless ref.: 1.86x speedup with -0.
- 2x ref.: 2x speedup with -0.4% acc ov than SWIN-S
- NVP-S/T: +1% / +1.7% acc over DEIT-2
- lossless speedup with Ampere

Key Pruning Results

		Size (Con	npression)	Spe	edup (×)	
Net1K DEIT)	Model	#Para (×)	#FLOPs (×)	V100	RTX 3080	Top-1
	DEIT-B	86M (1.00)	17.6G (1.00)	1.00	1.00	83.
	SWIN-B	88M (0.99)	15.4G (1.14)	0.95	-	83.
0.07% acc.	NVP-B	34M (2.57)	6.8G (2.57)	1.86	1.75	83.
	+ ASP	17M (5.14)	6.8G (2.57)	1.86	1.85	83.
over DEIT-B, 1.4x faster	SWIN-S	50M (1.74)	8.7G (2.02)	1.49	_	83.
	AutoFormer-B	54M (1.60)	11G (1.60)	-	-	82.4
	NVP-H	30M (2.84)	6.2G (2.85)	2.01	1.89	82.
	+ ASP	15M (5.68)	6.2G (2.85)	2.01	1.99	82.9
-S/T	DEIT-S	22M (3.94)	4.6G (3.82)	2.44	2.27	81.
	AutoFormer-S	23M (3.77)	5.1G (3.45)	-	-	81.
	T2T-ViT-14	21.5M (4.03)	6.1G (3.38)	-	-	81.
	SWIN-T	29M (2.99)	4.5G (3.91)	2.58	-	81.
o_cnarcitv	SViTE	35M (2.49)	7.5G (2.35)	-	-	81.
e-sparsity	NVP-S	21M (4.18)	4.2G (4.24)	2.52	2.35	82.
	+ ASP	10.5M (8.36)	4.2G (4.24)	2.52	2.47	82.
	DEIT-T	5.6M (15.28)	1.2G (14.01)	5.18	4.66	74.
	AutoFormer-T	5.7M (15.14)	1.3G (13.54)	-	-	74.
	NVP-T	6.9M (12.47)	1.3G (13.55)	4.97	4.55	76.
	+ ASP	3.5M (24.94)	1.3G (13.55)	4.97	4.66	76.



NViT - Pruning-Inspired Parameter Redistribution

Pruned models

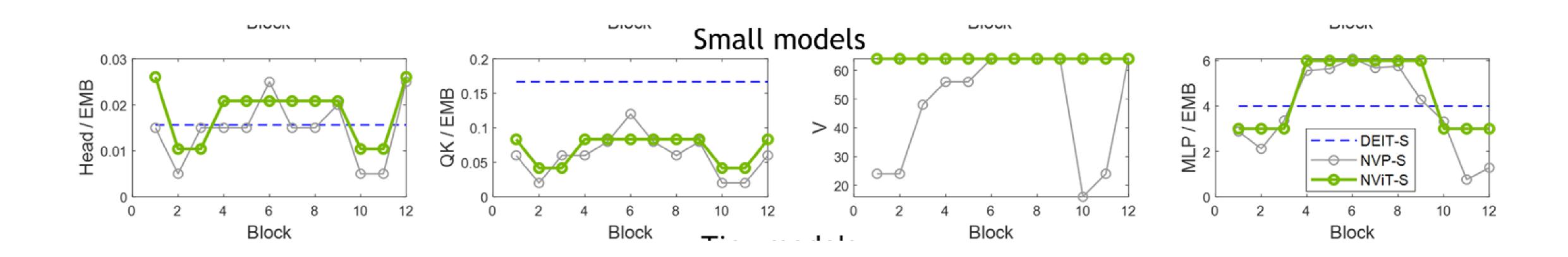
(inspires)

Embedding-based distribution rule

(yields)

Consistent Improvements over Hand Designed (ImageNet1K)

(scales to downstream)

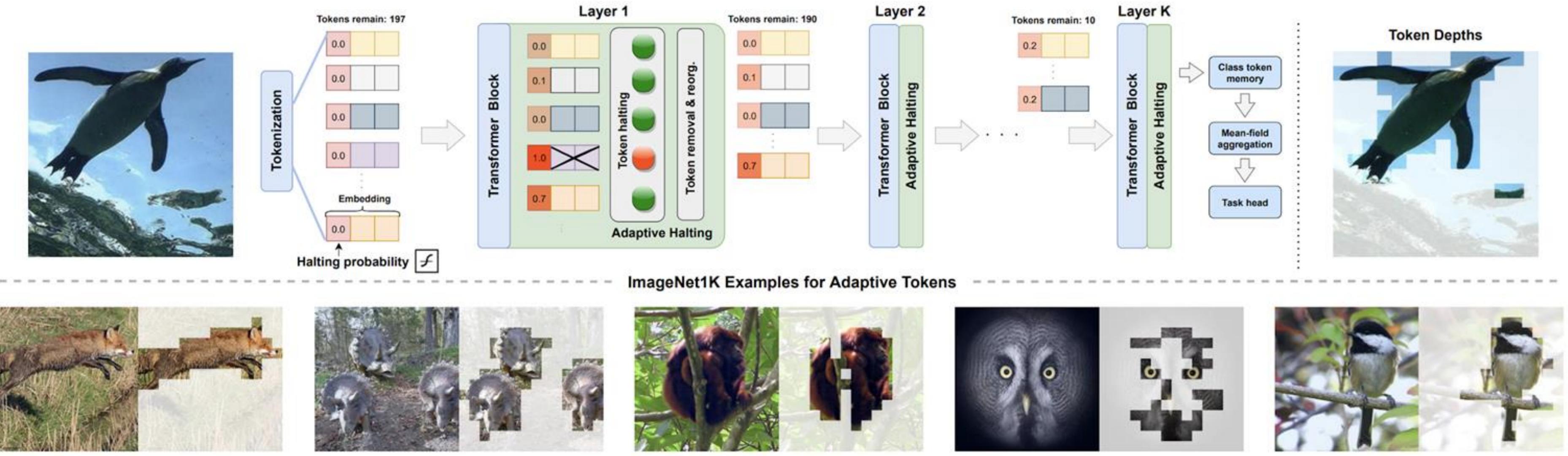


Blocks	H	QK	\mathbf{V}	MLP
DEIT	EMB/64	64	64	EMB×4
First/last Intermediate	$10 \epsilon \times EMB/100$	$\frac{\text{EMB}/10}{\epsilon \times \text{EMB}/20}$	64 64	$EMB \times 3$ $\epsilon \times EMB \times 3$

Model	EMB	#Para (×)	#FLOPs (×)	Speedup (×)	Accuracy (%)
DEIT-B	768	86M (1.00)	17.6G (1.00)	1.00	82.99*
NViT-B	720	86M (1.00)	17.6G (1.00)	1.01	83.10
DEIT-S	384	22M (3.94)	4.6G (3.82)	2.29	81.01*
NViT-S	384	23M (3.75)	4.7G (3.75)	2.31	81.22
DEIT-T	192	5.6M (15.28)	1.2G (14.01)	4.39	72.84*
NViT-T	192	6.4M (13.34)	1.3G (13.69)	4.53	73.91

Human - Adaptive Effort vs. Network - Fixed Effort

A-ViT - Adaptive Tokens for Efficient Vision Transformer

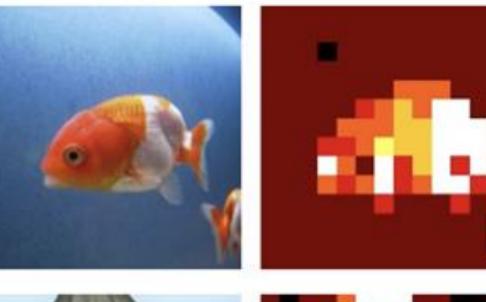


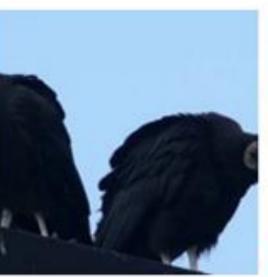
Yin, Vahdat, Jose, Mallya, Jan, Pavlo, A-ViT: Adaptive Inference for Efficient Vision Transformers, CVPR'22 oral

. Not all tokens are informative! Let the network decide which ones to halt, adaptively for varying inputs

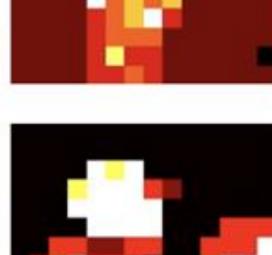
ADAPTIVE TOKENS IMAGENET1K

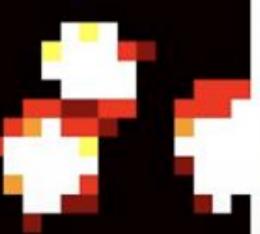
Intuitive distribution of computation!





- 1

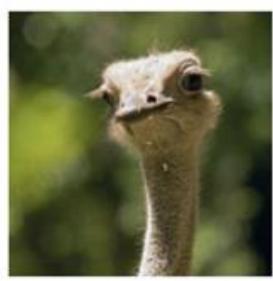


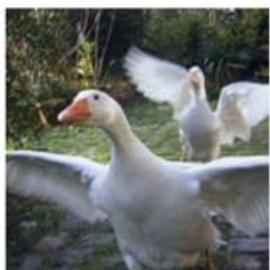


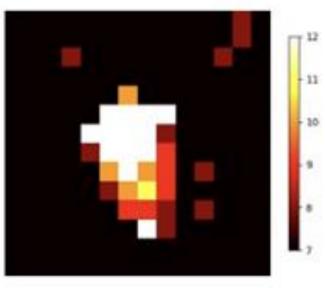
11

.

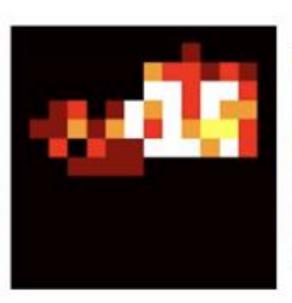
- 11

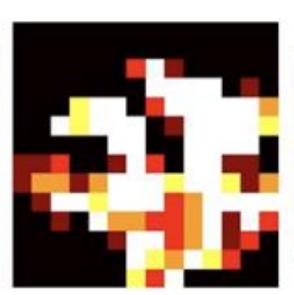


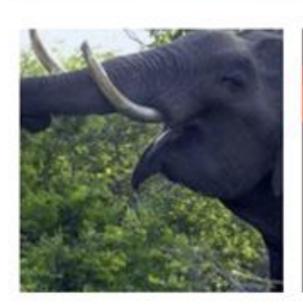


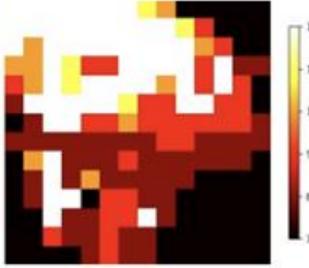


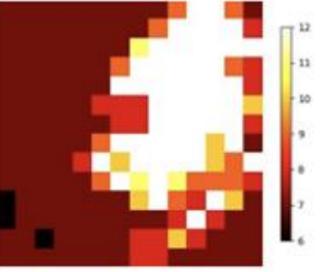
- 10

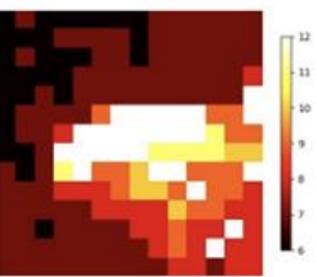


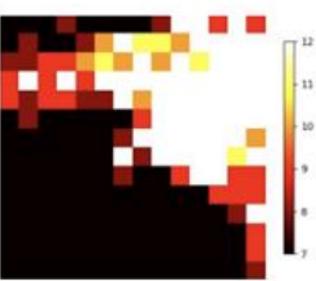


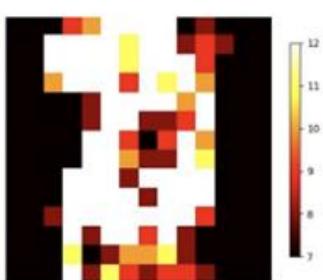


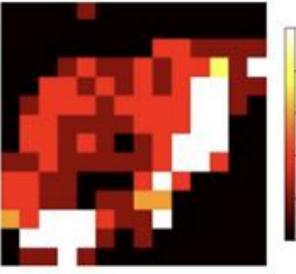


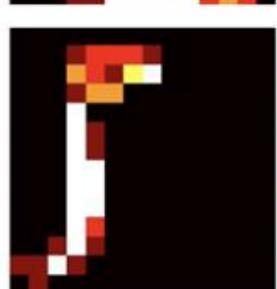


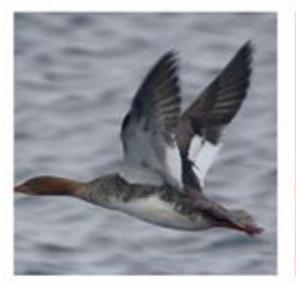


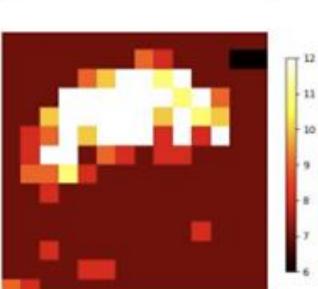


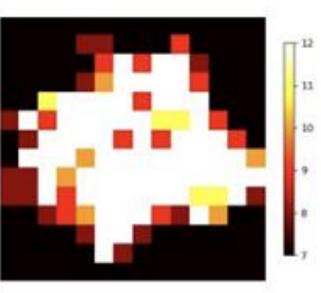


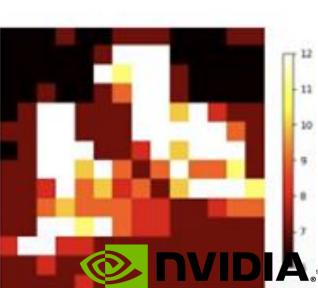


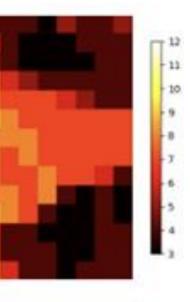


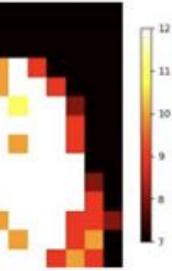




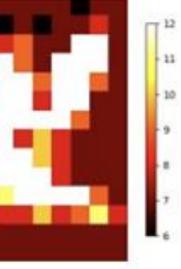








П	12
	-11
	10
	9
	8
	7



DeiT family

38%-62% throughput impr. with only 0.3% acc. drop

Off-the-shelf platform (GPU)

Direct speedup without changing DeiT cell

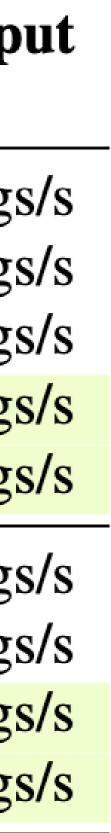
Direct Speed-up on Existing Platform

Method

ViT-B [11] DeiT-S [43] DynamicViT [36] A-ViT-S A-ViT-S + distl.

DeiT-T [43] DynamicViT [36] A-ViT-T A-ViT-S + distl.

Efficiency		Top-1 Acc. ↑	Throughp	
Params. ↓	FLOPs ↓			
86M	17.6 G	77.9	0.3K imgs	
22M	4.6G	78.9	0.8K imgs	
23M	3.4G	78.3	1.0K imgs	
22M	3.6G	78.6	1.1K imgs	
22M	3.6G	80.7	1.1K imgs	
5M	1.2G	71.3	2.1K imgs	
5.9 M	$0.9\mathbf{G}$	70.9	2.9K imgs	
5M	0.8 G	71.0	3.4K imgs	
5M	0.8 G	72.4	3.4K imgs	

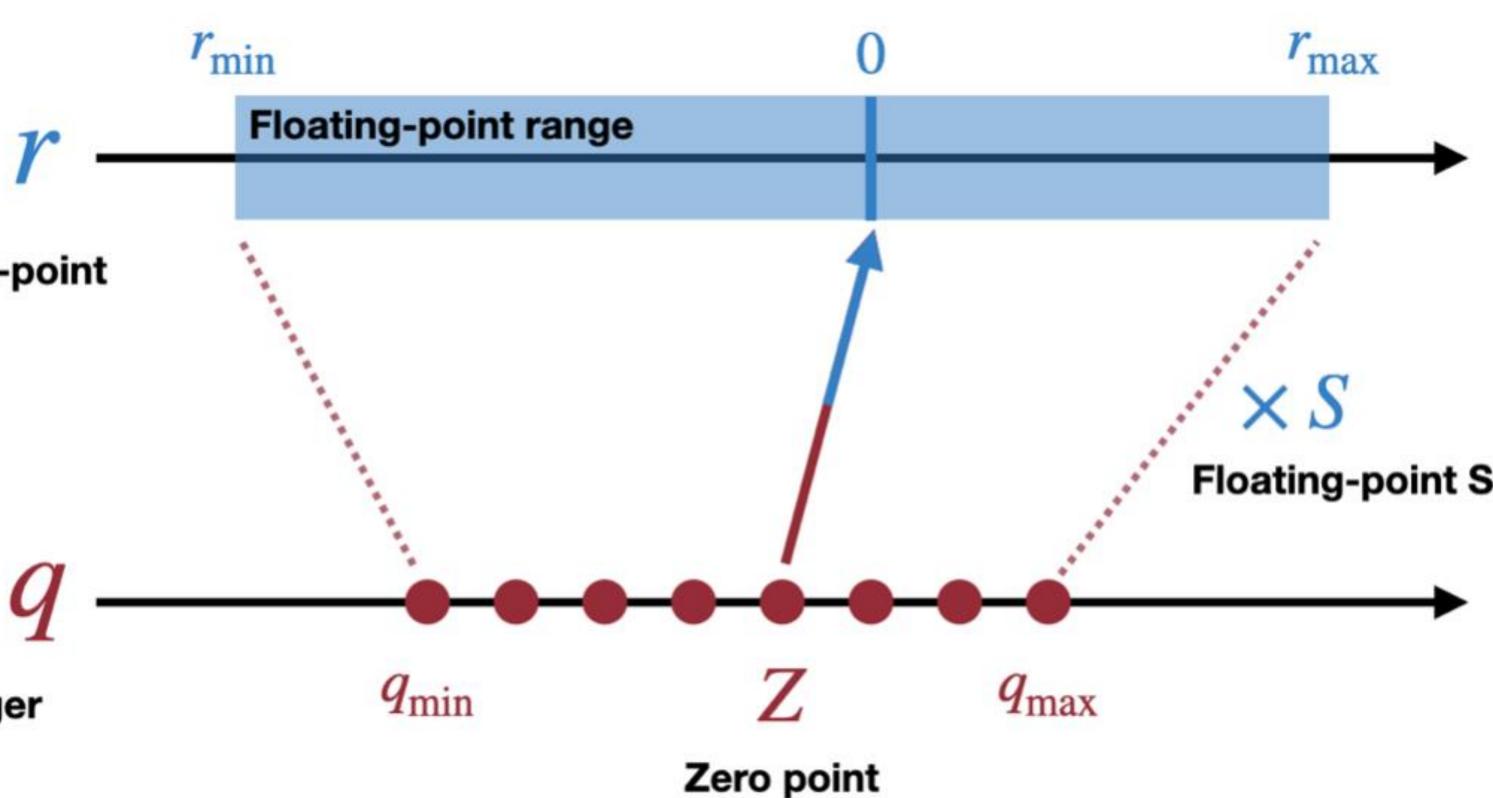


- LLMs are eerily large (e.g., >100B params. range).
- Models scale up faster than hardware capacity.
 - Serving a 175B GPT-3 model at least requires:
 - FP16: 350GB memory 5 x 80GB A100 GPUs
 - INT8: 175GB memory 3 x 80GB A100 GPUs

Floating-point

Integer

How about Lower Precision?



Floating-point Scale

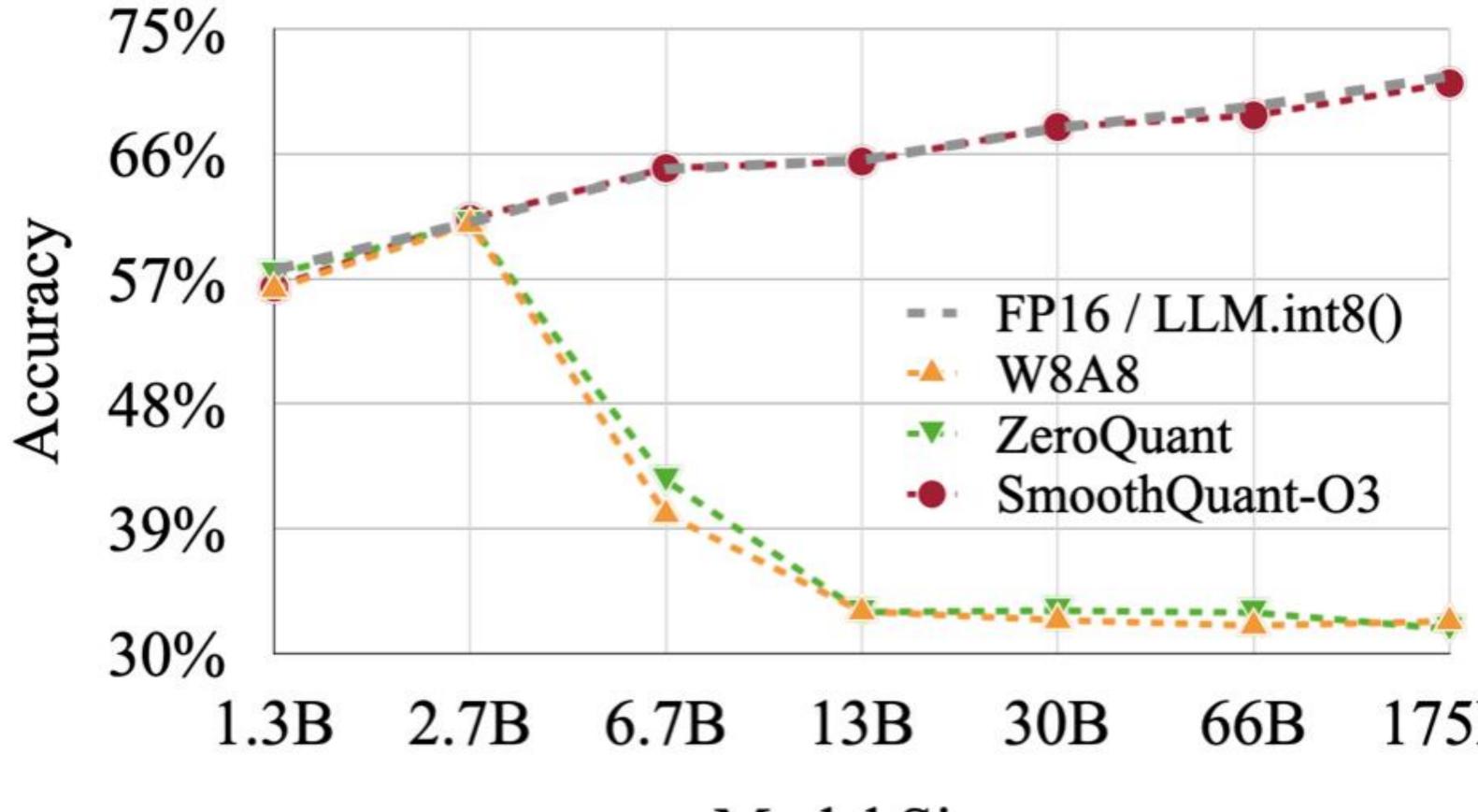
Activation outliers destroy quantized performance

-

quantization methods will destroy the accuracy.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dietters et al., 2022)

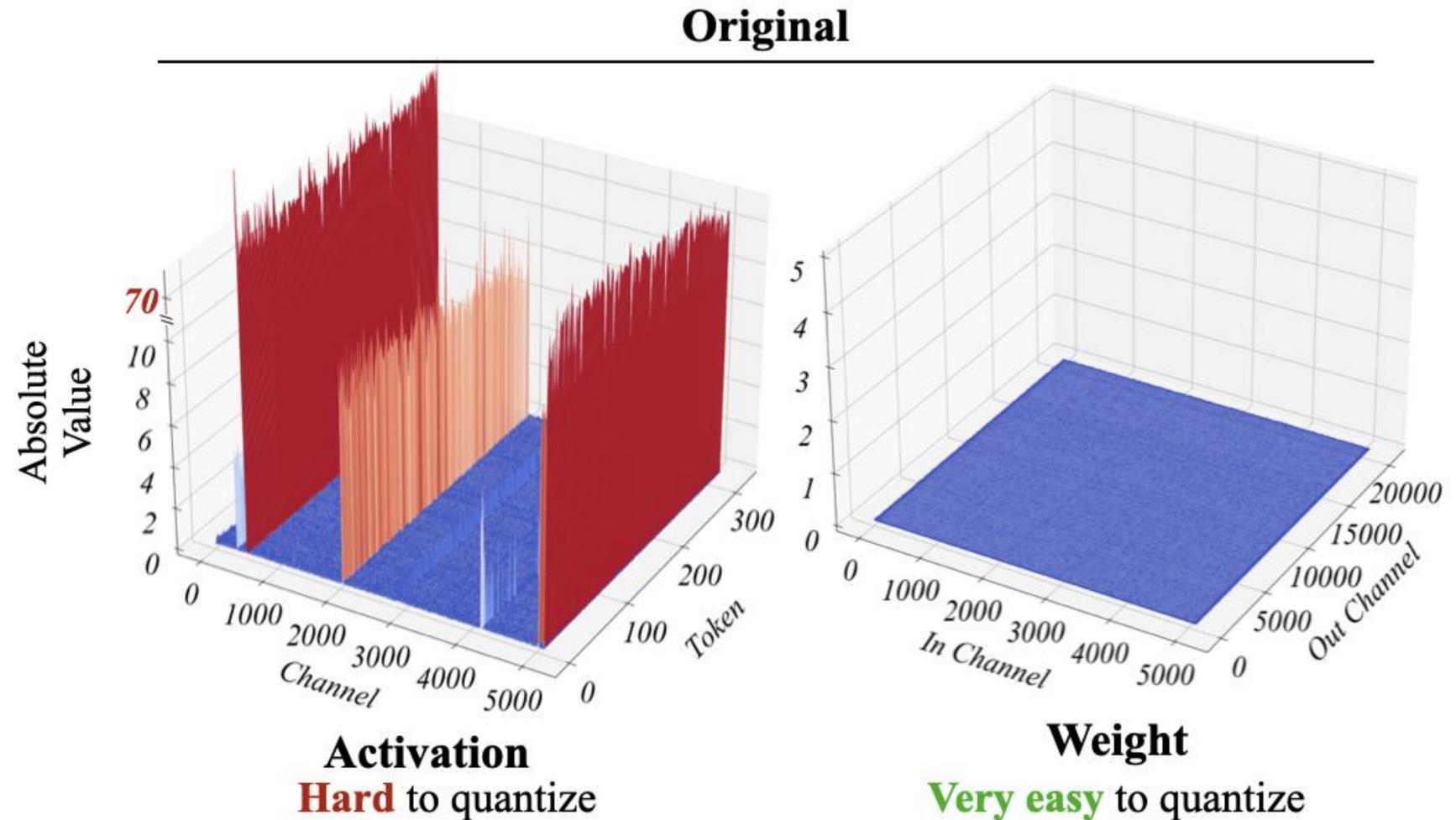
From CNN to Transformer: Shift in Pain Point



Model Size

W8A8 quantization has been an industrial standard for CNNs, but not LLM. Why? Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN

175B



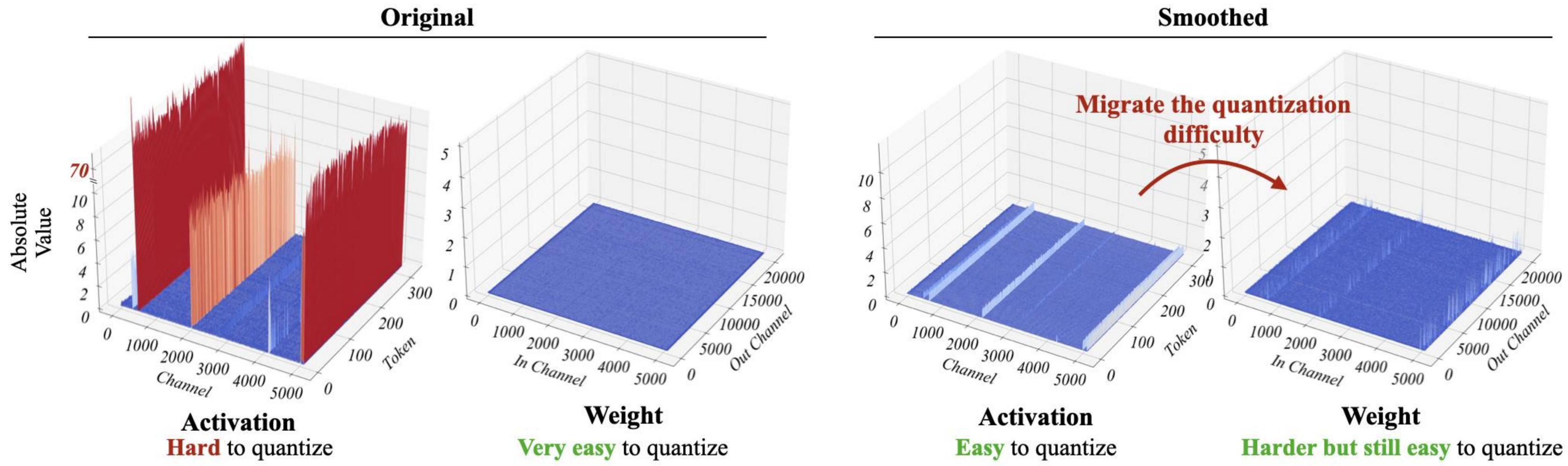
- Luckily, outliers persist in fixed channels

SmoothQuant

Smoothing Activation to Reduce Quantization Error

Very easy to quantize

- Weights are easy to quantize, but activation is hard due to outliers



- -
- Luckily, outliers persist in fixed channels -

Lin*, Xiao*, et al., SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML'23

SmoothQuant

Smoothing Activation to Reduce Quantization Error

Weights are easy to quantize, but activation is hard due to outliers

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize

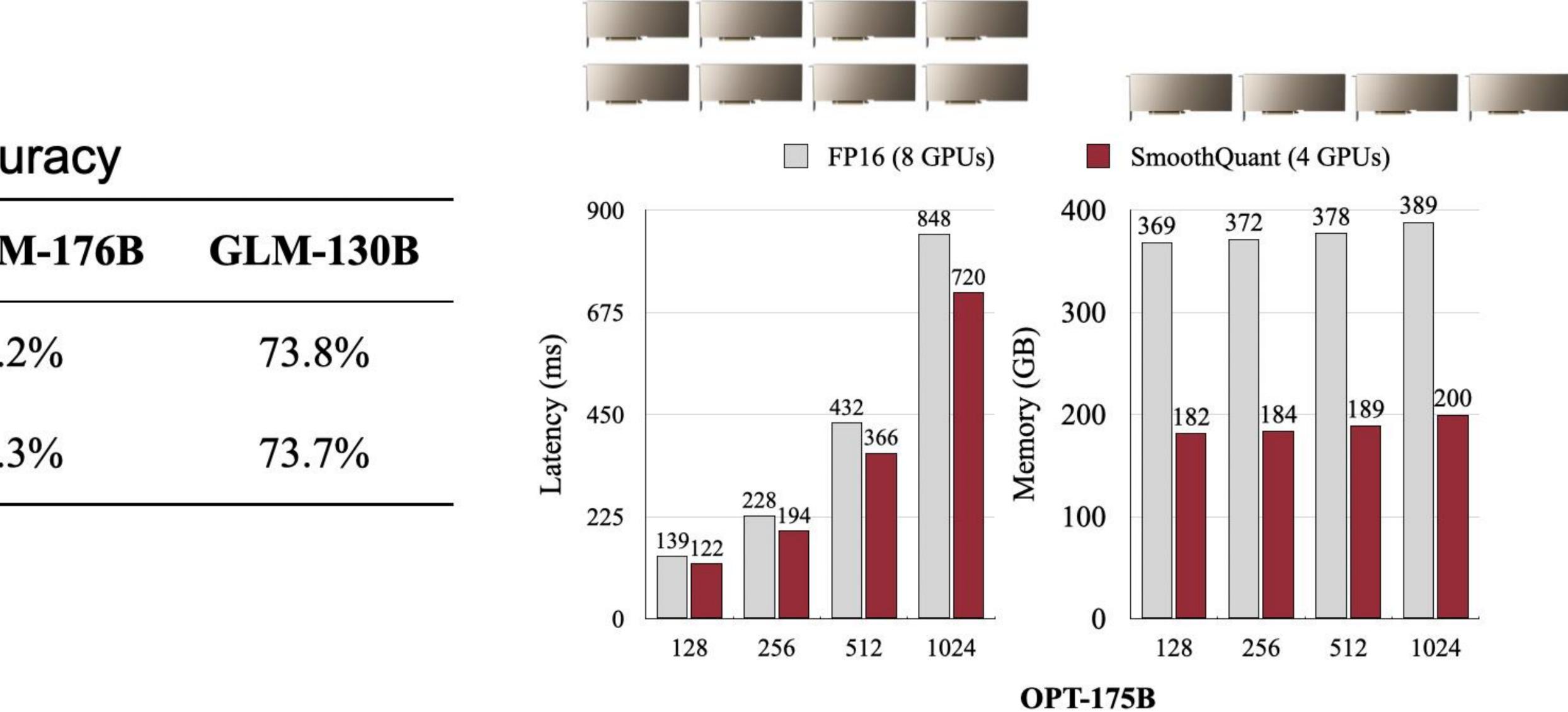
SmoothQuant well maintains the accuracy without fine-tuning.

LAMBADA Accuracy

	OPT-175B	BLOON
FP16	71.6%	68.2
SmoothQuant	71.2%	68.3

SmoothQuant (W8A8) **Smoothing Activation to Reduce Quantization Error**

SmoothQuant can both accelerate inference and halve the memory footprint.



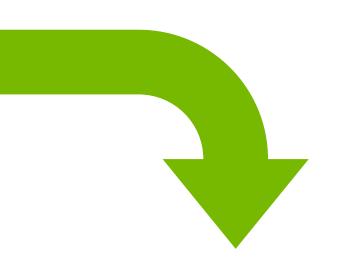
Data

Private

Data Access Dilemma

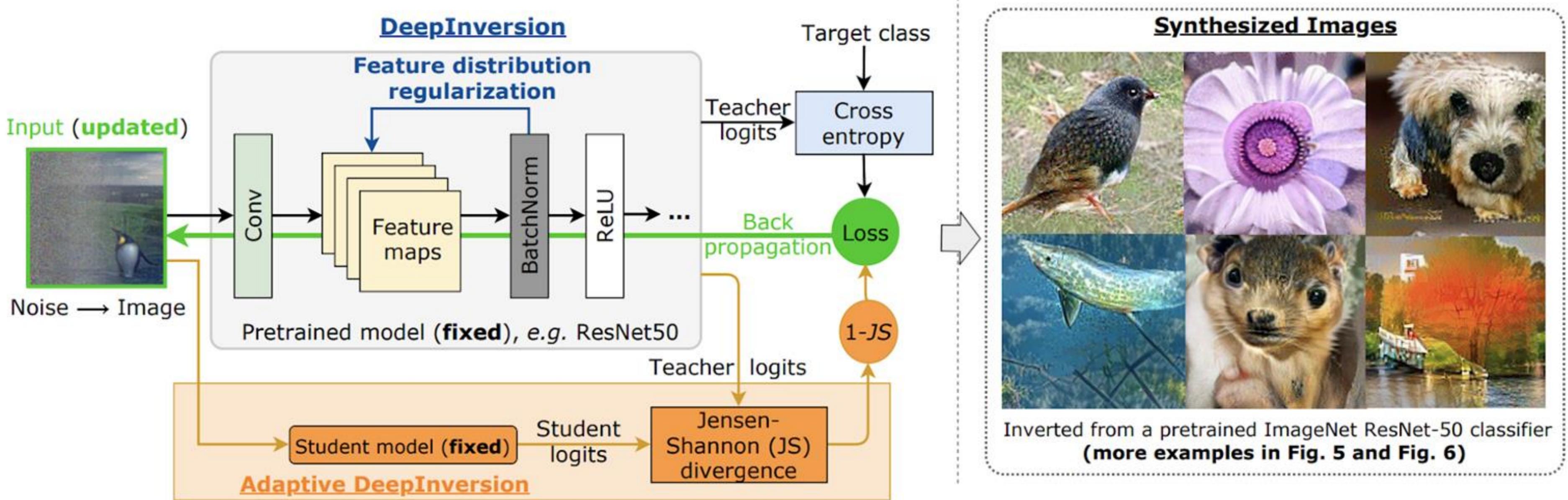
Extracting intelligence into model

Encoding (proxy-) information of data!



Trained models

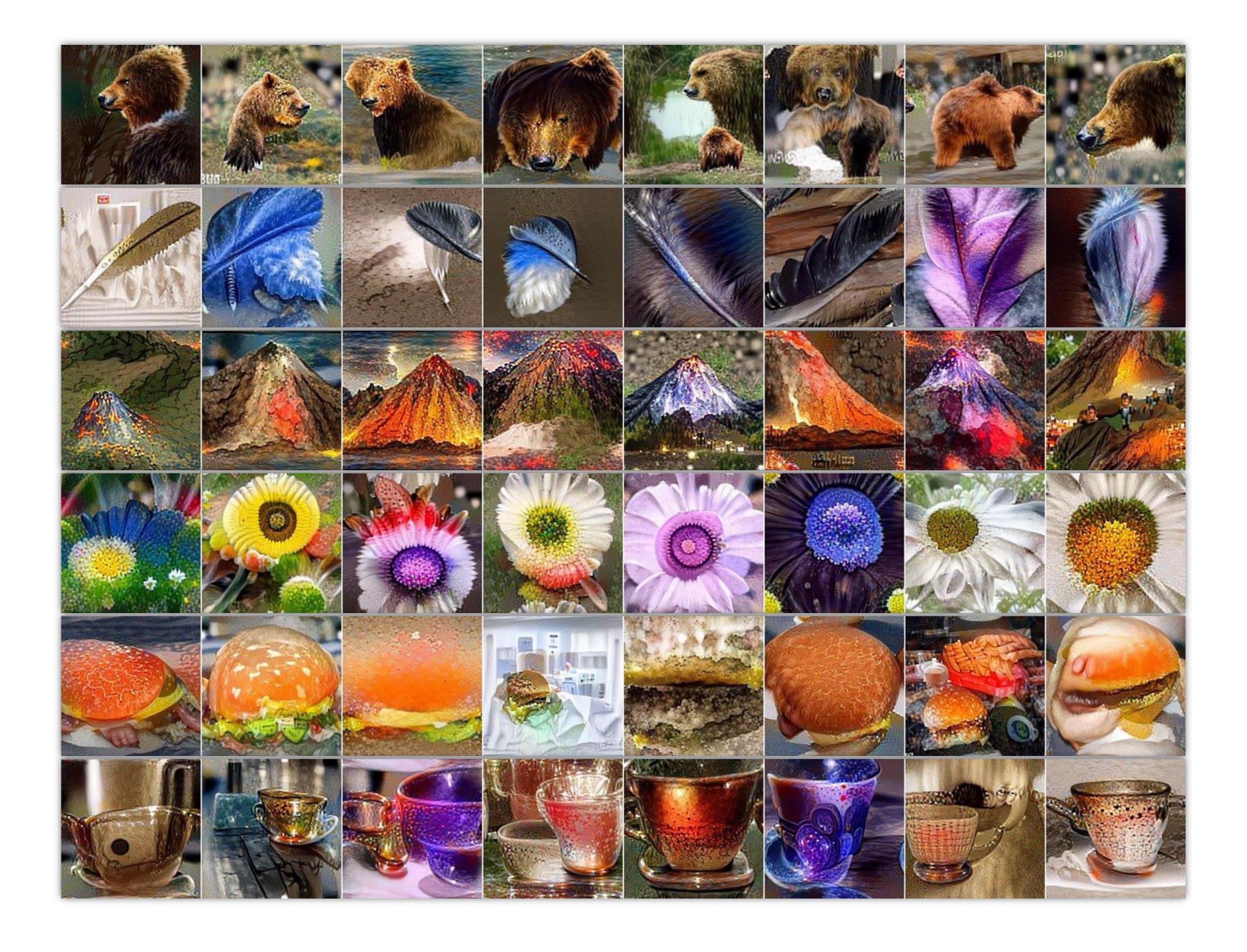
Trained & Shared



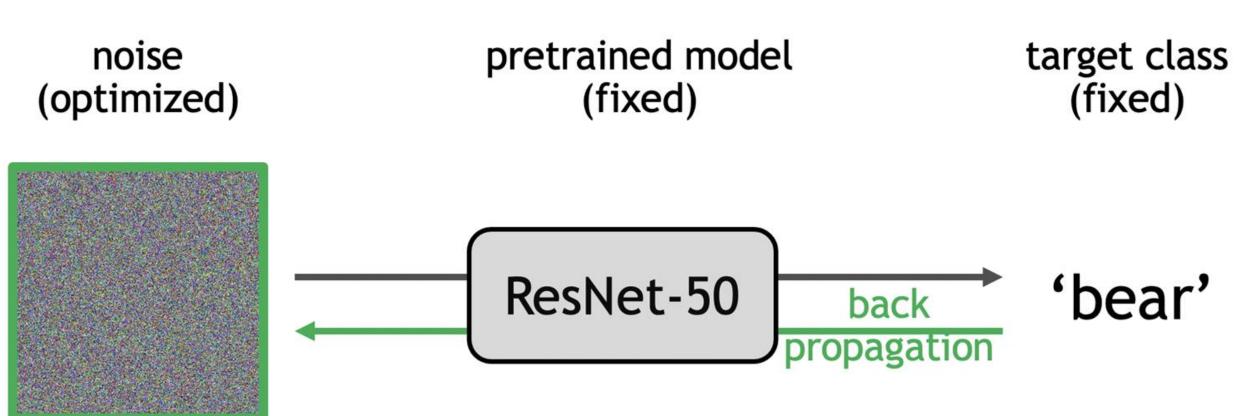
Yin*, Molchanov*, et al., Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion, CVPR 2020 oral

DeepInversion (CVPR'20 Oral) **Optimize Noise to Natural Images (Distribution Synthesis)**

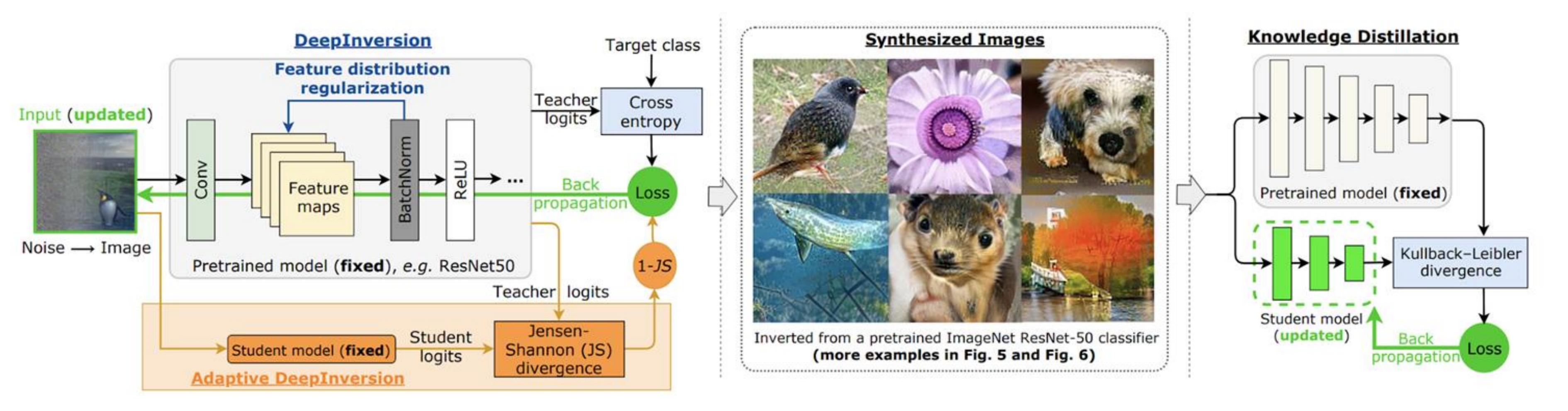
Trained Models <-> Datasets!



DeepInversion Image Analysis What did we learn from inverting a ResNet-50 on ImageNet?



class-conditional high resolution high fidelity high diversity



Zero real image, zero label!

- Data-free compression (pruning/quantization)
- Data-free knowledge distillation
- Data-free continual learning

DeepInversion (CVPR'20 Oral) **Optimize Noise to natural Images (Distribution Synthesis)**

Yin*, Molchanov*, et al., Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion, CVPR 2020 oral

Zero real image, zero label

Data-free compression (pruning/quantization)

- Data-free knowledge distillation _
- Data-free continual learning

Meth

(base model)

Taylor-FO-BN-81

SSS (ECCV-18)

ThiNet-70 (ICCV

NISP-50-A (CVPR-

Ours (Data-free)

Data-free Applications

ImageNet ResNet-50 filter pruning, 20% filter pruned

od	GFLOPs	top-1 accuracy
	4.1	76.1
l (CVPR-19)	2.7	75.5
	2.8	74.2
-17)	2.6	72.0
R-18)	3.0	72.8
	<u>2.7</u>	<u>73.3</u>

Training data needed 1.2M image/label 1.2M image/label 1.2M image/label 1.2M image/label 0 image/label

Zero real image, zero label

- Data-free compression (pruning/quantization) _
- Data-free knowledge distillation -
- Data-free continual learning ____

Setup

Original (teacher)

Data-free distillation (to student)

Data-free Applications

ResNet50v1.5 training on ImageNet

Training data	Loss	top-1 accuracy
1.2M ImageNet images/labels	Cross-entropy	77.2%
140K synthesized images	KL loss	<u>73.8%</u>

Zero real (old) image, zero (old) label

- Data-free compression (pruning/quantization) —
- Data-free knowledge distillation _

Data-free continual learning -

Meth

Oracle (d

Oracle (cla

LwF.MC (C)

Ours

Data-free Applications

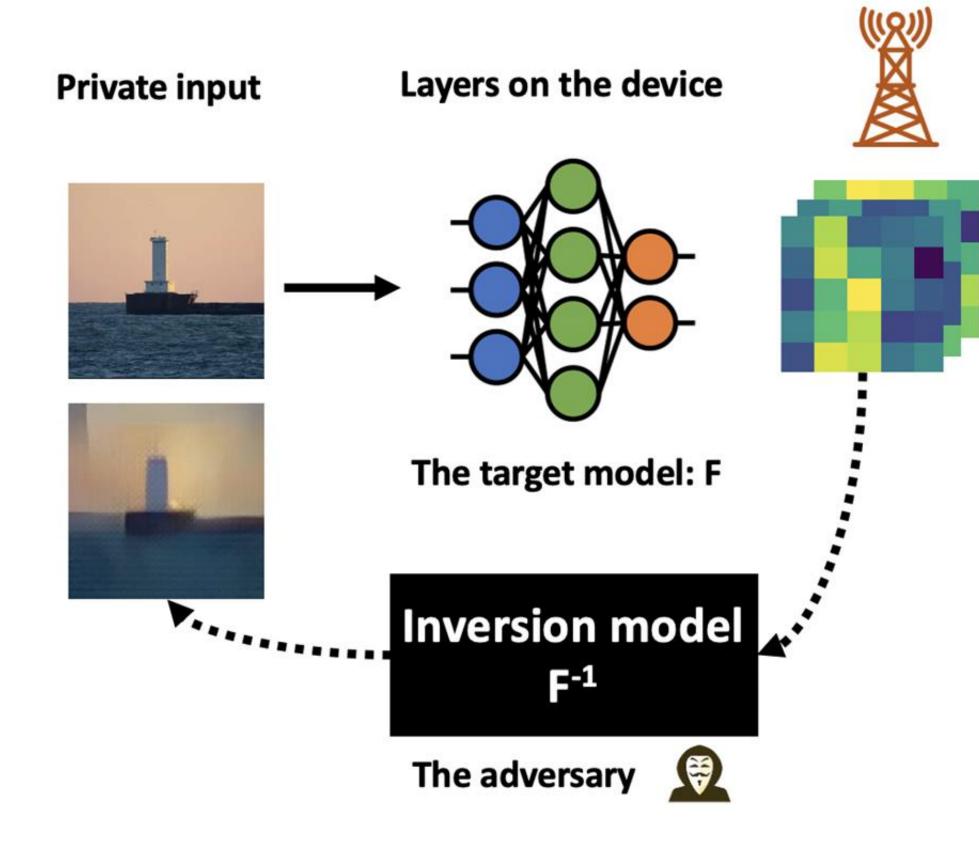
ImageNet ResNet-18, adding CUB and Flowers classes (1000 to 1200 to 1302 output classes)

ods	Combined*	ImageNet	CUB	Flowers
distill)	76.2	67.2	69.6	91.8
lassify)	74.7	66.3	66.6	91.1
VPR-17)	41.7	40.5	26.6	58.0
΄S	<u>74.6</u>	<u>64.1</u>	<u>66.6</u>	<u>93.2</u>

* Performance averaged over all datasets

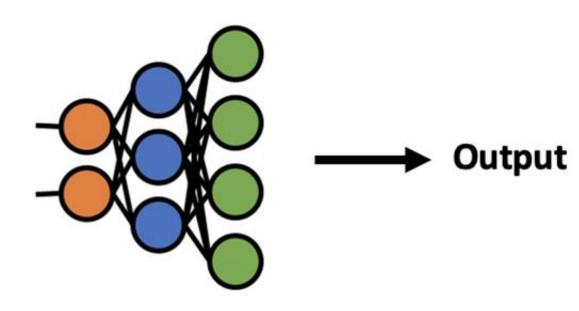
Networks encode dataset priors. Security indication?

Inverting Feature Maps as in Split Computing

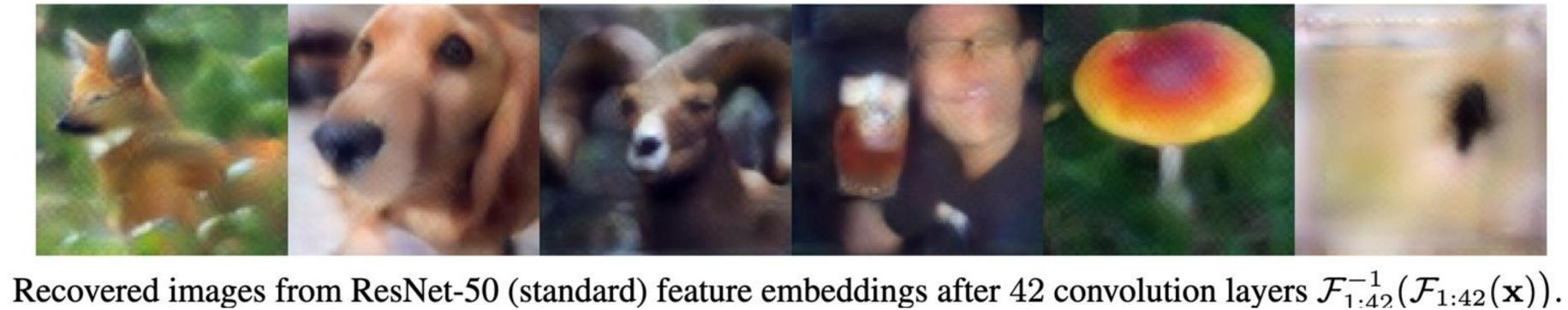


Dong, Yin, Alvarez, Kautz, Molchanov, Deep Neural Networks are Surprisingly Reversible, BMCV'22.

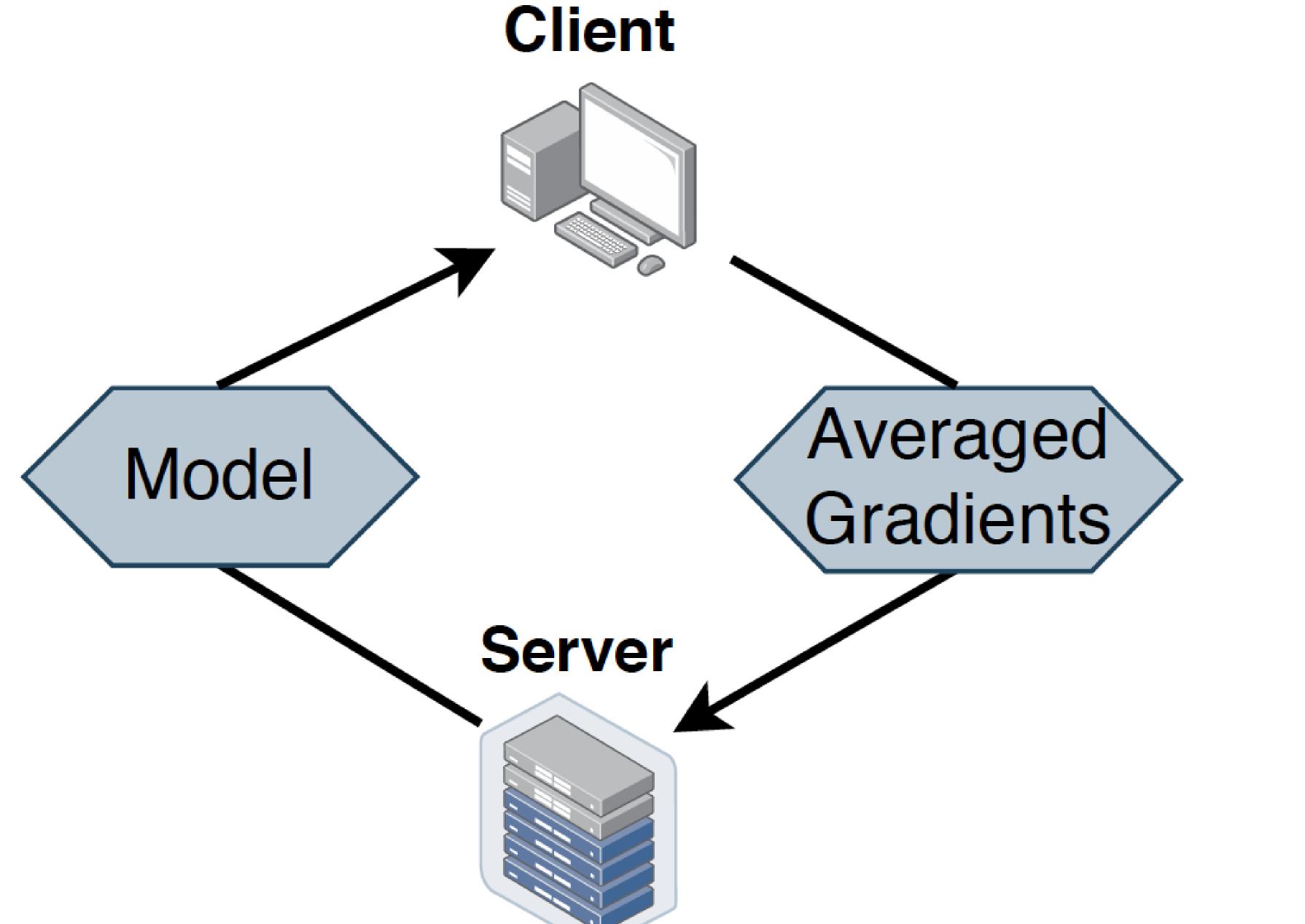
Layers on the cloud



ResNet50 Feature Map Inversion - ImageNet



Real images x of 224×224 px. from the ImageNet1K validation set.



Zhu et al., "Deep leakage from gradients," NeurIPS, 2019 Geiping et al., "Inverting gradients–How easy is it to break privacy in federated learning?," NeurIPS, 2020

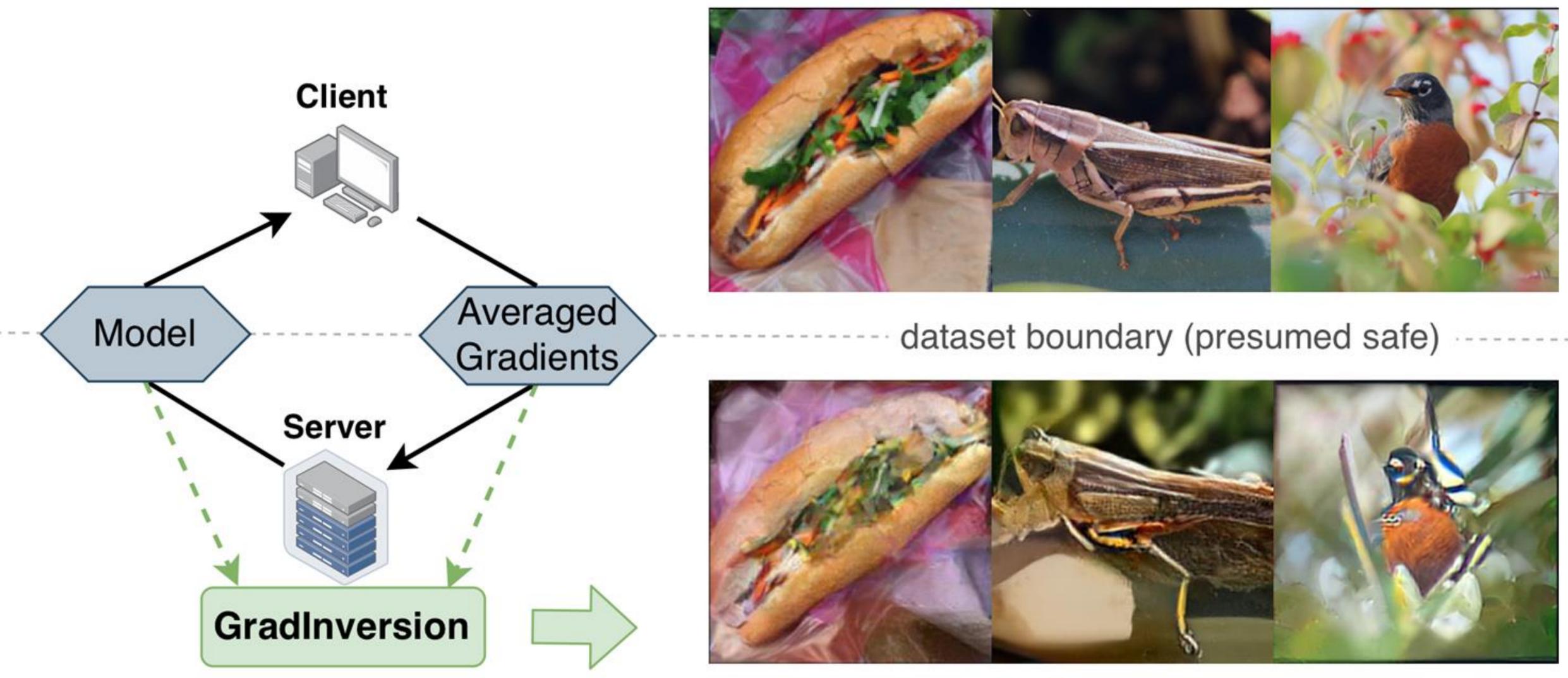
Inverting Gradients as in Gradient Sharing

<u>Central Idea</u> behind collaborative, distributed, and federated learning

Constraints

• CIFAR (NeurIPS'19) Sigmoid gates (NeurIPS'19) • Batch size one (NeurlPS'20)

Sharing averaged gradients -> Assumed safe



Yin, Mallya, Vahdat, Alvarez, Kautz, Molchanov, See through Gradients: Image Batch Recovery via GradInversion, CVPR, 2021

GradInversion (CVPR'21) Invert Averaged Gradients to Recover (Original) Images

Private Data (Client)

Recovery from Averaged Gradients (Server)

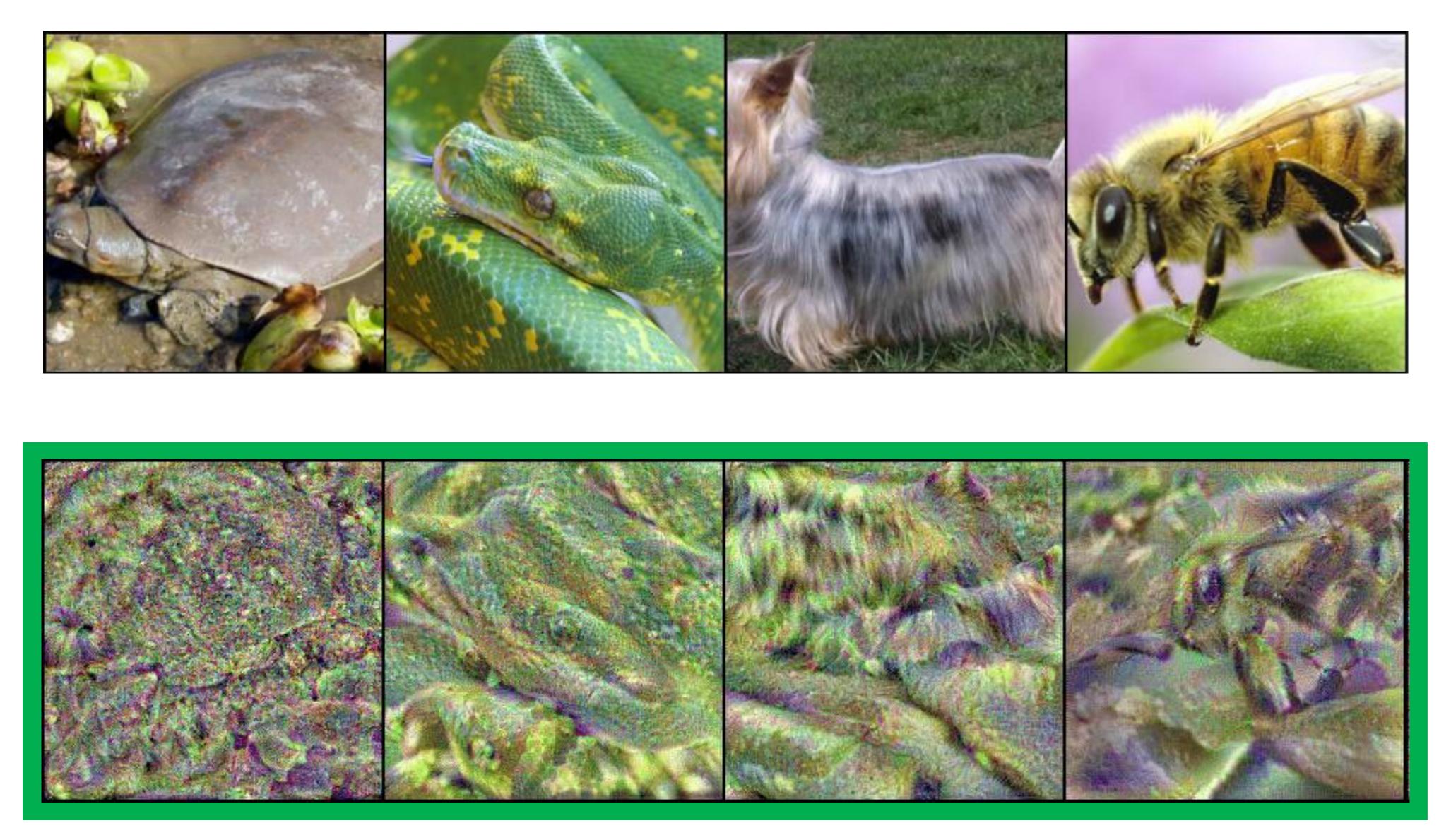
- Larger batch size, e.g., 48
- **ResNets (50 layers)**

Private Batch

• Off-the-shelf ResNets

Yin, Mallya, Vahdat, Alvarez, Kautz, Molchanov, See through Gradients: Image Batch Recovery via GradInversion, CVPR, 2021

GradInversion (CVPR'21) A Quick Demo - Inverting Gradients from ResNet-50 on ImageNet



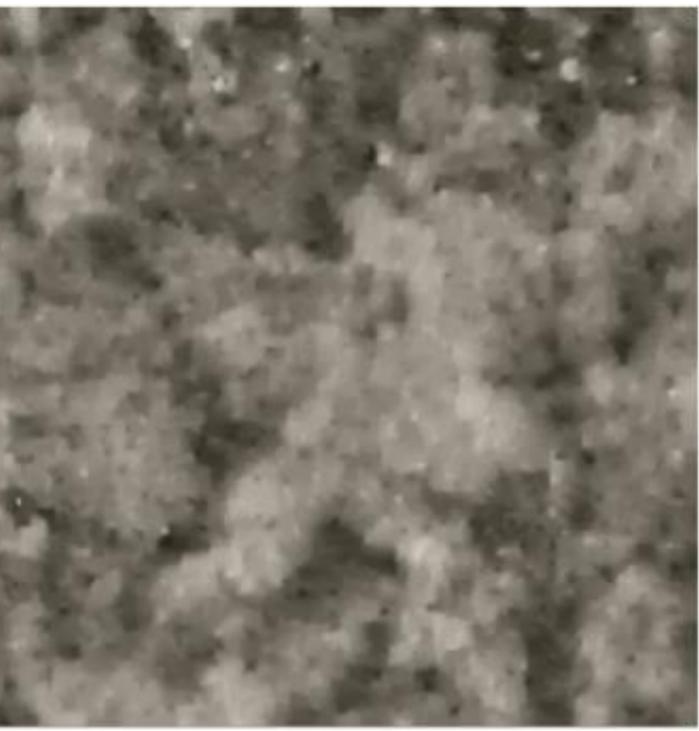
(Optimized by GradInversion from ImageNet-trained ResNet-50)

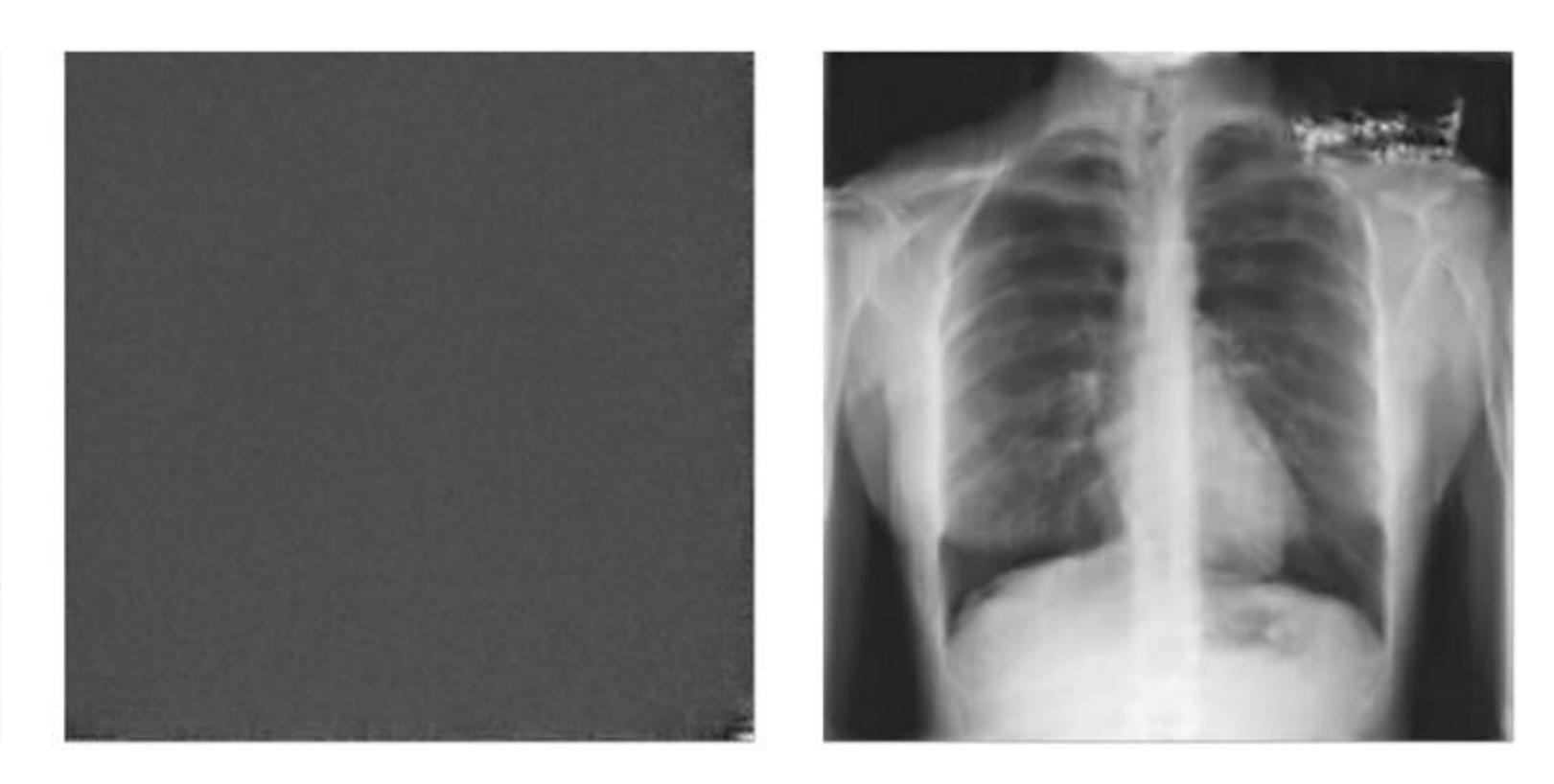
No meta-data on original dataset needed No GAN needed

(a) Original

Hatamizadeh, Yin, Molchanov, et al., Do Gradient Inversion Attacks Make Federated Learning Unsafe? IEEE TBI 2022.

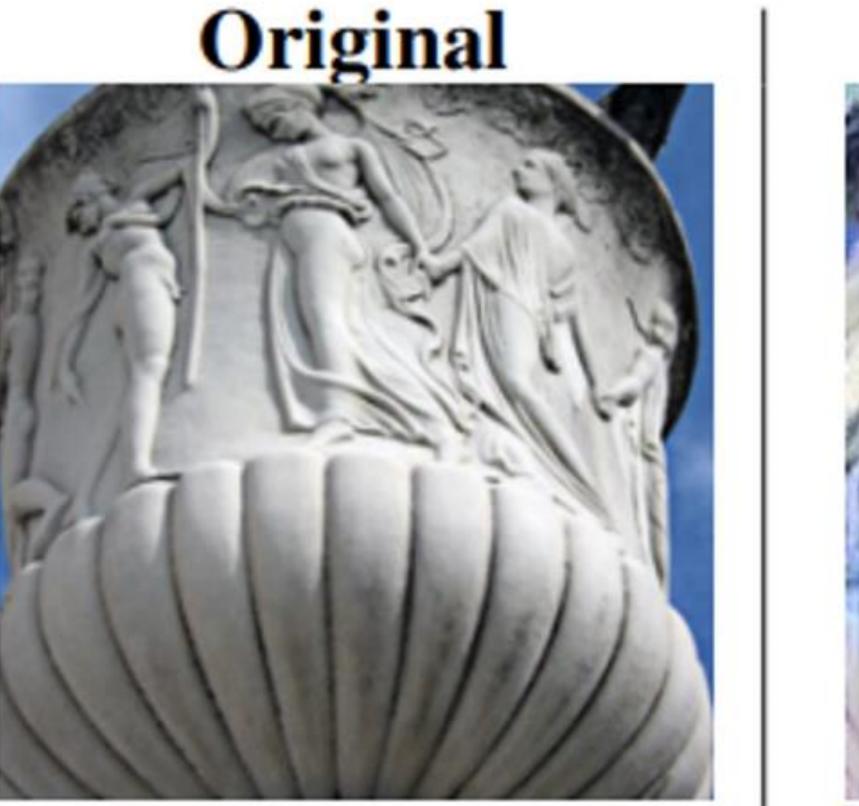
Other Domains

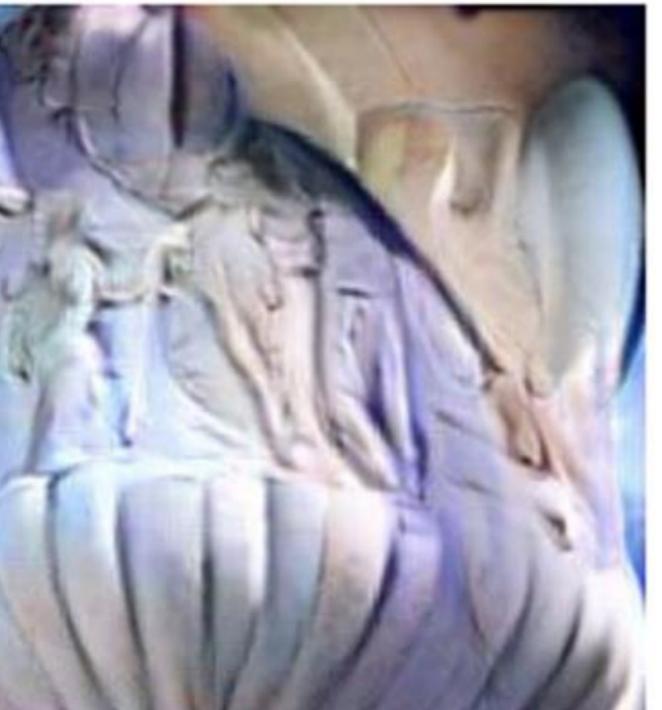




(b) w/o BN loss, w (c) w BN loss - w/o (d) Ours: w BN global ckpt [13] global ckpt loss, w global ckpt

How about Vision Transformers Gradient Inversion?



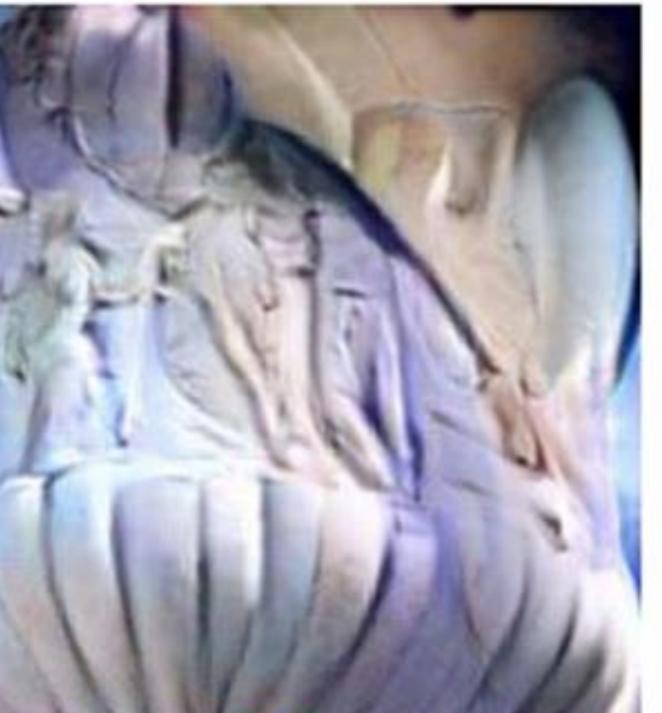


GradInv. [37] (RN-50)

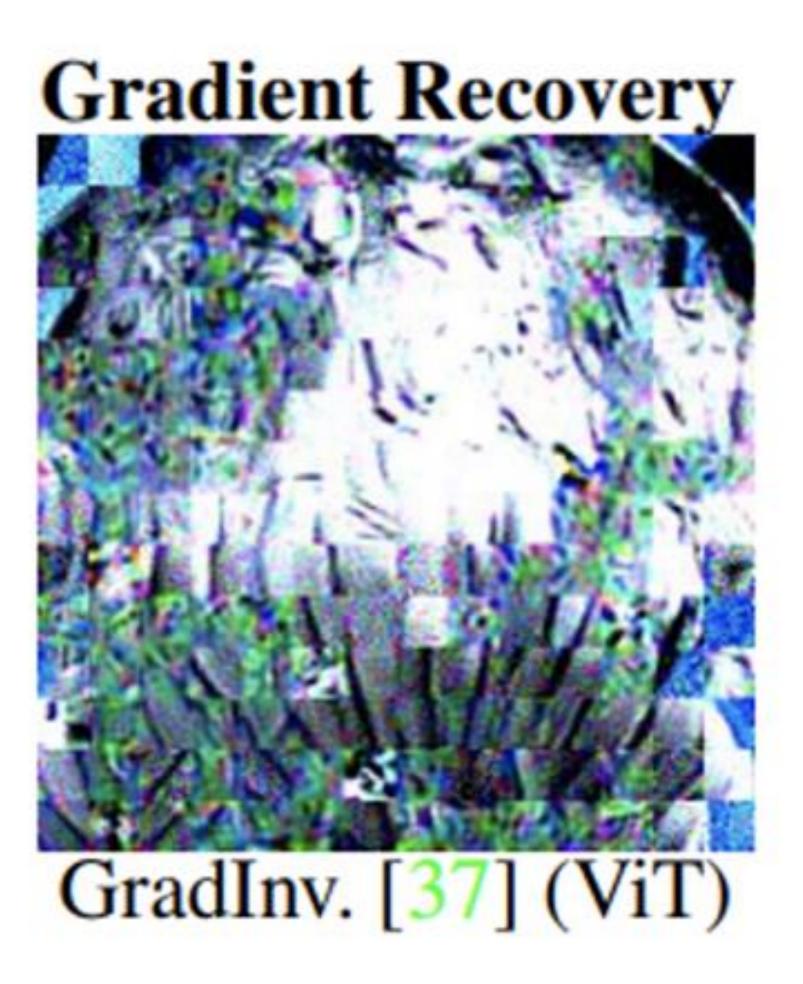


Vision Transformers Gradient Inversion - GradViT

Hatamizadeh*, Yin*, et al., GradViT: Gradient Inversion for Vision Transformers, CVPR, 2022



GradInv. [37] (RN-50)



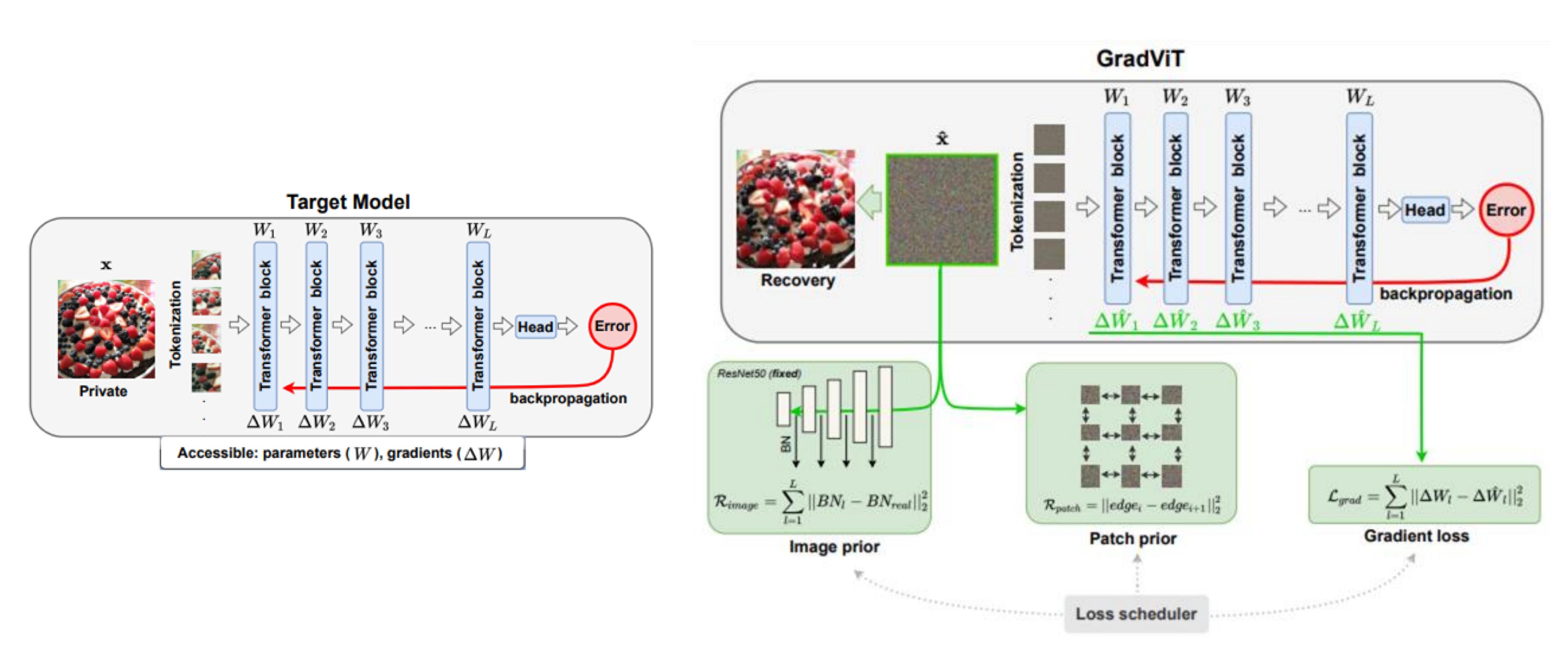


GradViT (VIT) - ours

Vision Transformers Gradient Inversion - GradViT (CVPR'22)

Hatamizadeh*, Yin*, et al., GradViT: Gradient Inversion for Vision Transformers, CVPR, 2022

GradViT (VIT) - ours



GradViT

Results: Face Domain, MS-CELEB-1M

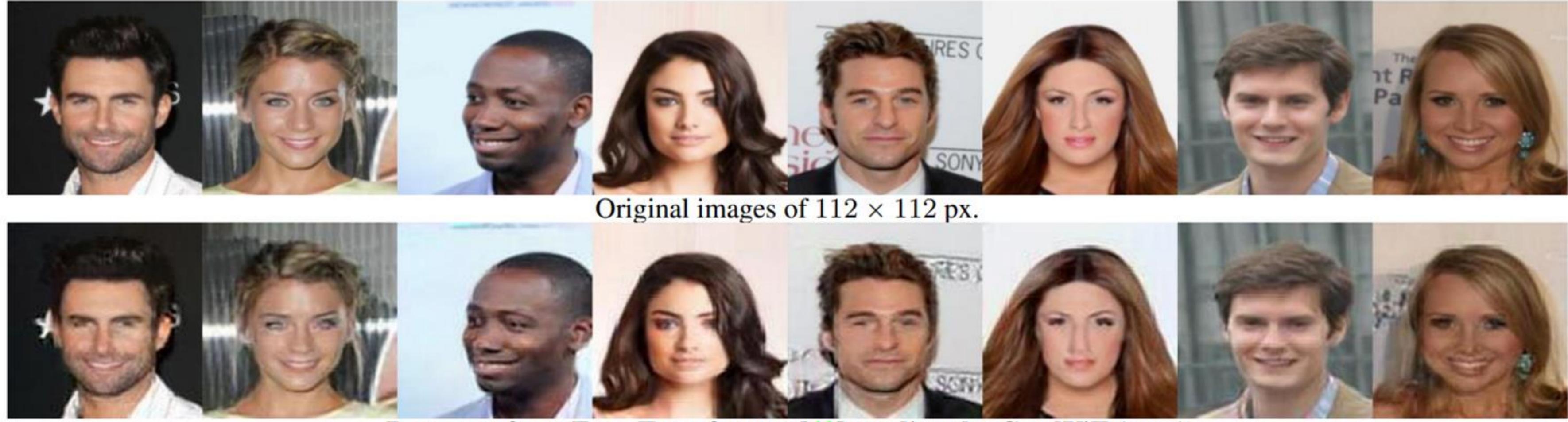


Figure 4. Qualitative comparison of reconstructed images from MS-Celeb-1M dataset using batch gradient inversion of Face-Transformer [42]. GradViT is able to recover detailed and identical facial features as in original. Recovery at batch size 4. Best viewed in color.

Recovery from Face-Transformer [42] gradient by GradViT (ours)



Main Takeaways - CNN Insights Scale to ViTs

CNNs

Network Efficiency

NAS & Pruning & LANA **CNNs**

ViT

NViT'22 (pruning scales)

ViT A-ViT'22 (adaptive inference scales better)

SmoothQuant'23 (quantization scales)

Data Efficiency & Security

DeepInversion (model is dataset)

GradInversion (proxy info. not proxy)

GradViT (ViT more vulnerable)

Links at NVLabs

https://github.com/NVlabs/Taylor_pruning

https://github.com/NVIabs/A-ViT

https://github.com/NVlabs/DeepInversion

https://github.com/NVlabs/NViT

https://github.com/NVlabs/HALP

(more to come)

Thank You! Q&A

Hongxu (Danny) Yin dannyy@nvidia.com

joint with

