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NN Performance optimization:
How to achieve more with less cost

Software perspective

Disclaimer: Results, numbers and performance are reported from the research perspective. 
For the exact performance please contact NVIDIA product managers.

Pavlo Molchanov, pmolchanov@nvidia.com

Distinguished Research Scientist, Manager

Slides credit: 
Giuseppe Fiameni gfiameni@nvidia.com
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html
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How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 2 3 3

3 3 1 2 1 2

done in 4 minutes

Making toast fast

https://www.youtube.com/watch?v=gVPK81rI390 

Pan – GPUs
Toast – layers or data

https://www.youtube.com/watch?v=gVPK81rI390
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§ Arithmetic and other instructions are executed by the 
Streaming Multiprocessors (SMs).

§ Data and code are accessed from high-bandwidth DRAM 
via the on-chip L2 cache.

§ Example - NVIDIA A100 GPU contains:

§ 108 SMs

§ 40 MB L2 cache

§ 80 GB of HBM2 memory with up to 2039 GB/s 
bandwidth

on chip

off chip

GPU architecture SIMPLIFIED
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• GEMMs (General Matrix Multiplications) are a fundamental building block for many operations in neural 
networks:

• fully-connected layers

• recurrent layers such as RNNs, LSTMs or GRUs

• convolutional layers

• attention layers

• GEMM is defined as:

• with A and B as matrix inputs, α and β as scalar inputs, and C as a pre-existing matrix which is overwritten 
by the output

Matrix matrix multiplications
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• GEMM:

• Matrix A is an M x K; matrices B is K x N; and C is M x N matrices

• The product of A and B has M x N values. It requires a total of M * N * K fused multiply-adds (FMAs)

• Each FMA is 2 operations, a multiply and an add, so a total of 2 * M * N * K FLOPS are required 

• α and β can be ignored if K is sufficiently large

• To understand performance: 

• For Tensor Cores in V100 - FLOPS:B ratio is 138.9

• If MxNxK = 8192x128x8192, AI = 124.1 FLOPS/B – memory bound

• If MxNxK = 8192x8192x8192, AI = 2730 FLOPS/B – math bounded

Math and Memory bounds
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• For FLOPS – multiply by 2

• Example how to calculate peak dense throughput for A100 GPU:

• 108 SMs 

• 1.41 GHz clock rate 

• 156 TF32 TFLOPS and 312 FP16 TFLOPS

Multiply-add operations per clock 
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• GEMMs is implemented by partitioning the output matrix into tiles, which are then assigned to thread 
blocks:

Tiling is important: tile and wave quantization

GPU Implementation
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Comparison of GEMM execution times with (a) cuBLAS 10.1 and (b) cuBLAS 
11.0, both with FP16 data. Calculation is fastest (duration is lowest) when K is 
divisible by 8. “NN” means A and B matrices are both accessed non-
transposed. NVIDIA V100-DGXS-16GB GPU.

Larger tiles run more efficiently. The 256x128-based GEMM runs 
exactly one tile per SM, the other GEMMs generate more tiles based 
on their respective tile sizes. NVIDIA A100-SXM4-80GB, CUDA 11.2, 
cuBLAS 11.4.

Optimality
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• Tile quantization occurs when matrix dimensions are not divisible by the thread block tile size.

Figure. Example of tiling with 128x128 thread block tiles. (a) Best case - 
matrix dimensions are divisible by tile dimensions (b) Worse case - tile 
quantization results in six thread blocks being launched, two of which 
waste most of their work.

Tile Quantization



12 12 

•  Total number of tiles is quantized to the number of multiprocessors on the GPU.

Utilization of an 8-SM GPU when 12 thread blocks with an 
occupancy of 1 block/SM at a time are launched for execution. 

Example:
• An NVIDIA A100 GPU has 108 SMs
• Assume 256x128 thread block tiles, one thread block per SM - a wave size of 108 tiles that can 

execute simultaneously
• Best utilization - #tiles is an integer multiple of 108 or just below

Wave quantization
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• Three factors; memory bandwidth, math bandwidth and latency

• Operations can be memory-limited and math-limited

• Math limited if:  #ops / #bytes > BWmath / BWmem

Memory and math limits, again
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• Elementwise Operations:
• Each element is independent of all other elements in the tensor:

• Additional of two tensors

• Most non-linearities (sigmoid, tanh, etc.), scale, bias, add, and others.

• Tend to be memory-limited, as they perform few operations per byte accessed.

• Reduction Operations:
• Produce values computed over a range of input tensor values.

• Pooling layers, batch-normalization, layer-normalization, softmax.

• Have a low arithmetic intensity and thus are memory limited.

• Dot-Product Operations:
• Dot-products of elements from two tensors, like a weight tensor and an activation tensor.

• Fully-connected layers, attention, etc. 

• Convolutions  - one vector is the set of parameters for a filter, the other is an “unrolled” activation region

• Math-limited if the corresponding matrices are large enough

DNN Operation Categories
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• Tensor Contractions

• Linear layers and components of Multi-Head Attention 
all do batched matrix-matrix multiplications. 

• Statistical Normalizations

• Softmax and layer normalization are less compute-
intensive than tensor contractions, and involve one or 
more reduction operations.

• Element-wise Operators

• Biases, dropout, activations, and residual connections. 

DATA MOVEMENT IS ALL YOU NEED: A CASE STUDY ON OPTIMIZING TRANSFORMERS https://arxiv.org/pdf/2007.00072.pdf

Transformer example
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• Look up the number of SMs on the GPU, and determine the ops:bytes ratio for the GPU.

• Compute the arithmetic intensity for the algorithm.

• Determine if there is sufficient parallelism to saturate the GPU by estimating the number and size of 
thread blocks. 

• The most likely performance limiter is:

• Latency if there is not sufficient parallelism

• Math if there is sufficient parallelism and algorithm arithmetic intensity is higher than the GPU ops:byte 
ratio.

• Memory if there is sufficient parallelism and algorithm arithmetic intensity is lower than the GPU 
ops:byte ratio.

How to find a problem?
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• 1. Operating In Math-Limited Regime Where Possible:

• If the speed of a routine is limited by calculation rate (math-limited or math-bound), performance can be 
improved by enabling Tensor Cores.

• 2. Using Tensor Cores Efficiently With Alignment:

• Use parameter shapes such that compute is aligned with Tensor Cores characteristics to 
minimize wave tails. 

• 3. Choosing Parameters To Maximize Execution Efficiency:

• GPUs perform operations efficiently by dividing the work between many parallel processes

Recommendations I
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• For memory limited layers (usually first layers):

• Use dense convolutions instead of depth-wise (especially for FP16, INT8)

• Minimize pooling (e.g. no squeeze-and-excitation layers)

• Avoid Layer Normalization

• Use BN and activations as they are foldable during inference (TRT does automatically)

• For math limited layers (usually later layers):

• Depth-wise should be fine

• SE works

• Layer normalization doesn’t hurt that much

• ReLU is the best activation as it can be fused with conv-BN

• For large image resolution use torch.nn.PixelShuffle(upscale_factor)

Recommendations for hierarchical models 
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• FP16 input/output channels for linear and conv should be multiplier 16, for INT8 – multiplier 32.

• Mini-batch to be a multiple of 8

• For sequence problems, pad the sequence length to be a multiple of 16 (FP16) or 32 (INT32)

• Concatenate matrices together like qkv for transformer 

• EfficientNet v1 and MobileNet don’t follow these recommendations

• EfficientNet v2 is much faster

From https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#opt-tensor-cores

Maximizing Tensor Core usage:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
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• Layout choice influences performance: NCHW is slower than NHWC

• Convolutions implemented for Tensor Cores require NHWC layout and are fastest when input tensors 
are laid out in NHWC.

• TensorFlow, Pytorch, MXNet support it

Figure 2. Kernels that do not require a transpose (NHWC) perform better than 
kernels that require one or more (NCHW). NVIDIA A100-SXM4-80GB, CUDA 11.2, 
cuDNN 8.1.

PyTorch:

input_data = 
input_data.to(memory_format=torch.channels_last)
model = model.to(memory_format=torch.channels_last)

Convolutions
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Figure 8. Specialized kernels for C = 4 speed up common first 
layers in convolutional neural nets (NHWC data used). Choosing C = 
4 or a multiple of 8 gives best performance. NVIDIA A100-SXM4-
80GB, CUDA 11.2, cuDNN 8.1

Convolutions
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• Batch size and the number of inputs and outputs to be divisible by 4 
(TF32) / 8 (FP16) / 16 (INT8) to run efficiently on Tensor Cores. 

• For A100: be divisible by 32 (TF32) / 64 (FP16) / 128 (INT8).

• When #parameters ↓: batch size and #inputs and #outputs to be 
divisible by at least 64 and ideally 256.

• Larger values for batch size and the number of inputs and outputs 
improve parallelization and efficiency. 

• As a rough guideline, choose batch sizes and neuron counts greater 
than 128 to avoid being limited by memory bandwidth (NVIDIA®A100-
SXM4-80GB; this threshold is similar for other A100 and V100 GPUs).

Linear Layers
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Transformers

Performance benefits substantially from choosing vocabulary size to be a 
multiple of 8 with both (a) cuBLAS version 10.1 and (b) cuBLAS version 11.0. 
The projection layer uses 1024 inputs and a batch size of 5120. NVIDIA V100-
SXM2-16GB GPU

Weight gradient calculation for a fully-connected layer benefits from 
padding batch size to be a multiple of 8 with both (a) cuBLAS version 
10.1 and (b) cuBLAS version 11.0. The first fully-connected layer 
(4096 outputs, 1024 inputs) from the Transformer feed-forward 
network is shown. NVIDIA V100-SXM2-16GB GPU.
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Example: FP32 training of Multibox SSD network

• Histogram shows activation gradient magnitudes throughout 
FP32 training; both axes are logarithmic. 

• Observations:

• Dynamic range of FP16 would be sufficient 
to cover the entire histogram. J

• Without “shifting” the histogram, half of the activations 
would be casted to 0, however. L

• Idea: “shifting” = multiplication with a scale factor! 

• Concern: Do I need to run a full training in order to find the 
scaling factor? à No, automatic mixed precision comes to the 
rescue! J

Mixed precision training
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• Mixed precision training is mostly about the dynamic range 
and less about the precision:

• exponent à dynamic range

• significand field à precision

• TF32 is a great compromise between FP32 (same range) 
and FP16 (same precision)

• TF32 is automatically enabled in NGC containers 

• No code change is necessary!

TF32 only makes sense

A note on data types
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• Backward passes under autocast are not 
recommended. 

• Backward ops run in the same dtype 
autocast chose for corresponding forward 
ops.

• scaler.step() first unscales the gradients of 
the optimizer's assigned params.

• If these gradients contain infs or NaNs, 
optimizer.step() is skipped.

# initialize gradient scaler
scaler = GradScaler()

# training loop
for epoch in epochs:
 for input, target in data:
   
  # zero gradient buffers
  optimizer.zero_grad()

  # forward pass with autocasting
  with autocast():
   output = model(input)
   loss = loss_fn(output, target)

  # call backward() on scaled loss
  scaler.scale(loss).backward()

  # update if no issues
  scaler.step(optimizer)

  # updates the scale for next iteration.
  scaler.update()

How to use it?

In Pytorch
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Am I use Tensor Cores?

https://pytorch.org/docs/stable/profiler.html 

from torch import profiler

prof_schedule = profiler.schedule(wait=2,
warmup=2,
active=5,
repeat=0)

callback =  
profiler.tensorboard_trace_handler(‘./log‘)

prof = profiler.profile(schedule=prof_schedule,                                  
on_trace_ready=callback,                                  
record_shapes=False,                                  
with_stack=False)

prof.start()

for it in range(num_iterations):
# code to be profiled
...
prof.step()

prof.stop()

https://pytorch.org/docs/stable/profiler.html
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● 2 out of 4 weights are zero

● Pruning can be done by magnitude

● Sometime requires finetuning

● Up to 30% speed up

● Available as part of APEX library

2:4 Sparsity

Ampere sparsity
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•Model Weights
•4 bytes * number of parameters for fp32 training
•6 bytes * number of parameters for mixed precision training (maintains a model in 
fp32 and one in fp16 in memory)

•Optimizer States
•8 bytes * number of parameters for normal AdamW (maintains 2 states)
•2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes
•4 bytes * number of parameters for optimizers like SGD with momentum 
(maintains only 1 state)

•Gradients
•4 bytes * number of parameters for either fp32 or mixed precision training 
(gradients are always kept in fp32)

•Forward Activations
•size depends on many factors, the key ones being sequence length, hidden size 
and batch size

During training

GPU memory
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§Data Parallelism

§ Allows to speed up training

§ All workers train on different data

§ All workers have the same copy of the model

§ Neural network gradients (weight changes) are 
exchanged

§Model Parallelism

§ Allows for a bigger model

§ All workers train on the same data

§ Parts of the model are distributed across GPUs

§ Neural network activations are exchanged

GPU1 GPU2
Averaging

Averaging

Averaging

Averaging

GPU2GPU1

Larger batchsize  and larger models

Data with model parallelism
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•Pipeline (Inter-Layer) Parallelism

• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

• Tensor (Intra-Layer) Parallelism

• Split individual layers across multiple devices

• Both devices compute different parts of Layer 0,1,2,3,4,5

Model parallelism



• Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network —

into several mini-batches of samples that will be run sequentially.

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

Gradient accumulation



Gradient accumulation

optimizer = ...

for epoch in range(...):    
for i, sample in enumerate(dataloader):        

inputs, labels = sample        
optimizer.zero_grad() 
# Forward Pass        
outputs = model(inputs)        
# Compute Loss and Perform Back-
propagation 
loss = loss_fn(outputs, labels)
loss.backward()
# Update Optimizer        optimizer.step()

optimizer = ...

NUM_ACCUMULATION_STEPS = ...

for epoch in range(...):

for idx, sample in enumerate(dataloader):

inputs, labels = sample

# Forward Pass

outputs = model(inputs)

# Compute Loss and Perform Back- propagation

loss = loss_fn(outputs, labels)

# Normalize the Gradients

loss = loss / NUM_ACCUMULATION_STEPS

loss.backward()

if ((idx + 1) % NUM_ACCUMULATION_STEPS == 
0) or (idx + 1 == len(dataloader)):

optimizer.zero_grad()

# Update Optimizer

optimizer.step()



Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

• The memory intensive part of training deep neural networks is computing the gradient of the loss by 
backpropagation. 

• By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in 
between those nodes during backpropagation, it is possible to calculate gradients at reduced memory cost. 

• When training deep feed-forward neural networks consisting of n layers, you can reduce the memory consumption 
to O(sqrt(n)), at the cost of performing one additional forward pass.

https://github.com/cybertronai/gradient-checkpointing



Activation Re-computation or gradient checkpointing

We might for instance simply recompute every node from the 
forward pass each time we need it.



Activation Re-computation or gradient checkpointing

The strategy we use here is to mark a subset of the neural net 
activations as checkpoint nodes.



Activation Re-computation or gradient checkpointing



Activation recompute challenges
Activation Recompute

Balance the memory savings and computational overhead?
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Optimization techniques

• Leverage AMP (Automatic Mixed Precision) 

• Activate Gradient Checkpoint

• Empty CUDA Cache:

• torch.cuda.empty_cache()

• Manually launch Garbage Collection:

• Import gc

• gc.collect()

• Enable 8-bit Adam

• Remove bias for convolutional layers followed by batch 
normalization

• Implement Gradient Accumulation

• Batch size divisible by 8

• Input/output channels:

• FP16 multiplier of 16

• INT8 – multiplier 32

• Implement Parallelism

• Data

• Model

• Pipeline

• Tensor

• Offload tensors to CPU (e.g. EMA, gradient checkpoint)

• Overlap computing and communication

• Improve data loader

• Constant Buffer Optimization

• Contiguous Memory Optimization

• Use Fused Kernel

• Low-Rank adaptation (specific for LLM)
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Optimization techniques

Method Speed Memory

Gradient 
accumulation

No Yes

Gradient 
checkpointing

No Yes

Mixed precision 
training

Yes (No)

Batch size Yes Yes

Optimizer choice Yes Yes

DataLoader Yes No

DeepSpeed Zero No Yes

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one
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Important CUDNN flags
https://pytorch.org/docs/stable/backends.html#torch-backends-cudnn 

Important aspects to consider:

• In NGC containers, the usage of TensorFloat-32 is 
enabled by default in order to accelerate FP32 
calculations using tensor cores on Ampere or newer 
GPUs.

• Certain classes of CUDA functions are a potential 
source of non-determinism, such as atomicAdd, 
where the order of parallel additions to the same 
value is undetermined and, for floating-point 
variables, a source of variance in the results.

• cuDNN can automatically determine which 
combination of primitives is most optimal. Only use 
this flag when input sizes of a model are no changing!

# get the cuDNN version
torch.backends.cudnn.version()

# check availability
torch.backends.cudnn.is_available()

# enabling cuDNN (default = True)
torch.backends.cudnn.enabled = True

# enabling TF32 (default = True for DL)
torch.backends.cudnn.allow_tf32 = True

# enable determinism (default = False)
torch.backends.cudnn.deterministic = False

# enable auto-tuning (default = False)
torch.backends.cudnn.benchmark = True

https://pytorch.org/docs/stable/backends.html
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What is TensorRT?
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Thank you

Disclaimer: Results, numbers and performance are reported from the research perspective. 
For the exact performance please contact NVIDIA product managers

Pavlo Molchanov, pmolchanov@nvidia.com
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