NN Performance optimization:
How to achieve more with less cost

Software perspective

Pavlo Molchanoy,

Distinguished Research Scientist, Manager

Disclaimer: Results, numbers and performance are reported from the research perspective.
For the exact performance please contact NVIDIA product managers.

NVIDIA.

Slides credit:
Giuseppe Fiameni SIrIDIA
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html |

mailto:pmolchanov@nvidia.com
mailto:gfiameni@nvidia.com

=

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

Pan - GPUs
Toast - layers or data

Making toast fast

https://www.youtube.com/watch?v=qVPK81rI390

done in 4 minutes

s

2 <A NVIDIA

https://www.youtube.com/watch?v=gVPK81rI390

=

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

Pan - GPUs
Toast - layers or data

Making toast fast

https://www.youtube.com/watch?v=qVPK81rI390

done in 3 minutes

s

3 €ANVIDIA.

https://www.youtube.com/watch?v=gVPK81rI390

Yy
 Background: - Mixed precision and sparsity
Memory aspect

« GEMM
Parallelism techniques

 Math and memory bounds
Gradient checkpointing /accum&ation

* GPU implementation

. . - Final recommeng
* Tile and wave quantization <

Tenso}r RT

ons

« Understanding DNN performance:
 DNN Operation Categories
* Transformer architecture example
 What is the limit? Guide

e Recommendations I:

* Hierarchical modeIS}ndJJNe% 4
. Tensorges/ (S

CQHVO|UtIOhS

GPU architecture SIMPLIFIED

= Arithmetic and other instructions are executed by the
Streaming Multiprocessors (SMs). Emn
= Data and code are accessed from high-bandwidth DRAM

via the on-chip L2 cache.

= Example - NVIDIA A100 GPU contains:

on chip
=108SMs e e o o
off chip

= 40 MB L2 cache

= 80 GB of HBM2 memory with up to 2039 GB/s
bandwidth

Matrix matrix multiplications

GEMMs (General Matrix Multiplications) are a fundamental building block for many operations in neural
networks:

fully-connected layers
recurrent layers such as RNNs, LSTMs or GRUs
convolutional layers

attention layers

GEMMis definedas: (' = a AB T ,BC

with A and B as matrix inputs, a and B as scalar inputs, and C as a pre-existing matrix which is overwritten
by the output

s

6 NVIDIA.

Math and Memory bounds

GEMM: C = a AB+8C
Matrix A is an M x K; matrices Bis Kx N; and C is M x N matrices
The product of A and B has M x N values. It requires a total of M * N * K fused multiply-adds (FMAS)
Each FMA is 2 operations, a multiply and an add, so a total of 2* M * N * K FLOPS are required

a and B can be ignored if K is sufficiently large

To understand performance:

Arithmetic Intensity = —oumber of FLOPS —_ 2- (M- N-K) _ M-N.-K
y = number of byte accesses = 2-(M-K+N-K+M-N) = M-K+N-K+M-N

For Tensor Cores in V100 - FLOPS:B ratio is 138.9
If MxNxK =8192x128x8192, Al = 124.1 FLOPS/B - memory bound
If MXNxK = 8192x8192x8192, Al = 2730 FLOPS/B - math bounded

7 NVIDIA.

Multiply-add operations per clock

For FLOPS — multiply by 2

Example how to calculate peak dense throughput for A100 GPU:
108 SMs
1.41 GHz clock rate

156 TF32 TFLOPS and 312 FP16 TFLOPS

Figure 2. Multiply-add operations per clock per SM

NVIDIA Architecture | FP64 | FP32 | FP16 | INT8 | FP64 | TF32 | FP16 | INT8 | INT4 | INT1
32 64 128 256 512

Volta

Turing 2 64 128 256 512 1024 2048 8192 |
Ampere (A100) 32 64 256 256 64 512 1024 2048 4096 16384 o -
Ampere, sparse 1024 2048 4096 8192 /

8 <ANVIDIA.

GPU Implementation

GEMMs is implemented by partitioning the output matrix into tiles, which are then assigned to thread
blocks:

N Table 1. Tensor Core requirements by cuBLAS or cuDNN version for some common data precisions. These
, A . requirements apply to matrix dimensions M, N, and K.
(- cuBLAS version < 11.0 cuBLAS version211.0
5 matrix Tensor Corescanbeusedioh= o nNNversion < 7.6.5 cuDNN version 7.6.3
INT8 Multiples of 16 Always but most efficient with
K < } Ktile multiples of 16; on A100,
— multiples of 128.
Ntile
FP16 Multiples of 8 Always but most efficient with
K multiples of 8; on A100,
R C multiples of 64.
A matrix C matrix TE32 N/A Always but most efficient with
multiples of 4; on A100,
multiples of 32.
<
M Block,
FP64 N/A Always but most efficient with
}Mtile } Mitile multiples of 2; on A100,
\ multiples of 16.
—— —
Ktile Ntile

Tiling is important: tile and wave quantization

s

9 < NVIDIA.

Optimality

Comparison of GEMM execution times with (a) cuBLAS 10.1 and (b) cuBLAS
11.0, both with FP16 data. Calculation is fastest (duration is lowest) when K is
divisible by 8. “NN” means A and B matrices are both accessed non-
transposed. NVIDIA V100-DGXS-16GB GPU.

Performance of NN GEMM on cuBLAS v10 Performance of NN GEMM on cuBLAS v11
with M = 1024, N = 1024 with M = 1024, N = 1024
01s| [— e S 015/ —— — S —
’UT : : : G : : :
£ £
5 0.10F e, 5 0.10}
> >
@] i § : @]
0.05f e o o : 0.05}
0.00 ! I I 0.00 i I I
1008 1012 1016 1020 1024 1008 1012 1016 1020 1024
K K
(a) (b)

Larger tiles run more efficiently. The 256x128-based GEMM runs
exactly one tile per SM, the other GEMMs generate more tiles based
on their respective tile sizes. NVIDIA A100-SXM4-80GB, CUDA 11.2,
CuBLAS 11.4.

Performance of NT GEMM by Tile Size
with K = 4096, M = 6912, N = 2048

300 1

250 1

200 1

150 -

TFLOPS

100 -

50 1

64x64 128x64 128x128 256x128
Tile Size

s

10 <A NVIDIA.

Tile Quantization

Tile quantization occurs when matrix dimensions are not divisible by the thread block tile size.

Figure. Example of tiling with 128x128 thread block tiles. (a) Best case - Performance of NT GEMM with
matrix dimensions are divisible by tile dimensions (b) Worse case - tile K'=4096, M = 27648
quantization results in six thread blocks being launched, two of which 0.5 1= ' '
waste most of their work.
0.4
256 257 m
—— Eo03
| | | : cC
l O
128 128 g 0.2
i)
256 ____________ L 256 ____________ a—r L ------------i N
128 128 §
: 0.0 — ; ;
! 2 128 256 384 512
| | | ___________: N
b
(a) (b) (b)

s

11 NVIDIA.

Wave quantization

Total number of tiles is quantized to the number of multiprocessors on the GPU.

i Performance of NT GEMM with
time _ K = 4096, M = 2304
\ 0.5
] 04 e PSS
SM | s e o3l T
1 S
e | £ -
S
| 3
S s) T
A L4
wave 0 wave 1 (tail) 0ol | |
.1536 3072 4608 6144
Utilization of an 8-SM GPU when 12 thread blocks with an N
occupancy of 1 block/SM at a time are launched for execution. (b)
Example:

 An NVIDIA AT00 GPU has 108 SMs

« Assume 256x128 thread block tiles, one thread block per SM - a wave size of 108 tiles that can

execute simultaneously
« Best utilization - #tiles is an integer multiple of 108 or just below

4321

0

Number of Tiles for NT GEMM
with K = 4096, M = 2304

1536 3072 4608 6144

/
/
y

s

12 <A NVIDIA.

« Background:
« GEMM
* Math and memory bounds

* GPU implementation

» Tile and wave quantization a9 i « Final recomr
- Tensor RT

|
4

* Understanding DNN performance:

 DNN Operation Categories

* Transformer architecture example

 How to find a problem?

« Recommendations I:

. Hierarchical models and UNets

 Tensor cores
 Convolutions

 Linear layers

Transformer

i

- Mixed precision and sparsity

. Memory aspect

- Gradient checkpoi

{

Parallelism Esch niques

s 7

Memory and math limits, again

Three factors; memory bandwidth, math bandwidth and latency
Operations can be memory-limited and math-limited

Math limited if: #ops / #bytes > BWmath / BWmem

Table 1. Examples of neural network operations with their arithmetic intensities. Limiters
assume FP16 data and an NVIDIA V100 GPU.

Operation Arithmetic Intensity Usually limited by...
Linear layer (4096 outputs, 315 FLOPS/B arithmetic

1024 inputs, batch size 512)

Linear layer (4096 outputs, 1 FLOPS/B memory

1024 inputs, batch size 1)

Max pooling with 3x3 window |2.25 FLOPS/B memory

and unit stride

ReLU activation 0.25 FLOPS/B memory

Layer normalization <10 FLOPS/B memory

s

14 < NVIDIA.

DNN Operation Categories

Elementwise Operations:

Each element is independent of all other elements in the tensor:
Additional of two tensors
Most non-linearities (sigmoid, tanh, etc.), scale, bias, add, and others.

Tend to be memory-limited, as they perform few operations per byte accessed.

Reduction Operations:

Produce values computed over a range of input tensor values.
Pooling layers, batch-normalization, layer-normalization, softmakx.

Have a low arithmetic intensity and thus are memory limited.

Dot-Product Operations:

Dot-products of elements from two tensors, like a weight tensor and an activation tensor.
Fully-connected layers, attention, etc.
Convolutions - one vector is the set of parameters for a filter, the other is an “unrolled” activation region

Math-limited if the corresponding matrices are large enough

s

15 NVIDIA.

Transformer example

Tensor Contractions

Linear layers and components of Multi-Head Attention
all do batched matrix-matrix multiplications.

Statistical Normalizations Table 1. Proportions for operator classes in PyTorch.
Softmax and layer normalization are less compute- Operator class %fiop % Runume
intensive than tensor contractions, and involve one or A Tensor contraction 99.80 61.0
more reduction operations. Stat. normalization 0.17 25.5

O Element-wise 0.03 13.5

Element-wise Operators

Biases, dropout, activations, and residual connections.

s

16 NVIDIA.

How to find a problem?

Look up the number of SMs on the GPU, and determine the ops:bytes ratio for the GPU.

Compute the arithmetic intensity for the algorithm.

Determine if there is sufficient parallelism to saturate the GPU by estimating the number and size of
thread blocks.

The most likely performance limiter is:

Latency if there is not sufficient parallelism

Math if there is sufficient parallelism and algorithm arithmetic intensity is higher than the GPU ops:byte
ratio.

Memory if there is sufficient parallelism and algorithm arithmetic intensity is lower than the GPU
ops:byte ratio.

s

17 NVIDIA.

* Background:
« GEMM
« Math and memory bounds
* GPU implementation -
» Tile and wave quantization 6 - i
* Understanding DNN performance:
 DNN Operation Categories
* Transformer architecture example
* What is the limit? Guide
 Recommendations I:
» Hierarchical models and UNets
» Tensor cores

 Convolutions

 Linear layers

Transformer

- Mixed precision and sparsity

.- Memory aspect
- Gradient checkpc

- Tensor R'I; r

-

Parallelism tgch S5

e Final recommenda

Recommendations |

1. Operating In Math-Limited Regime Where Possible:

If the speed of a routine is limited by calculation rate (math-limited or math-bound), performance can be
improved by enabling Tensor Cores.

2. Using Tensor Cores Efficiently With Alignment:

Use parameter shapes such that compute is aligned with Tensor Cores characteristics to
minimize wave tails.

3. Choosing Parameters To Maximize Execution Efficiency:

GPUs perform operations efficiently by dividing the work between many parallel processes

s

19 NVIDIA.

Recommendations for hierarchical models

For memory limited layers (usually first layers):
Use dense convolutions instead of depth-wise (especially for FP16, INT8)
Minimize pooling (e.g. no squeeze-and-excitation layers)
Avoid Layer Normalization

Use BN and activations as they are foldable during inference (TRT does automatically)
For math limited layers (usually later layers):

Depth-wise should be fine

SE works

Layer normalization doesn’t hurt that much
RelLU is the best activation as it can be fused with conv-BN
For large image resolution use torch.nn.PixelShuffle(upscale_factor)

s

20 NVIDIA.

Maximizing Tensor Core usage:

FP16 input/output channels for linear and conv should be multiplier 16, for INT8 — multiplier 32.
Mini-batch to be a multiple of 8
For sequence problems, pad the sequence length to be a multiple of 16 (FP16) or 32 (INT32)

Concatenate matrices together like gkv for transformer

EfficientNet vl and MobileNet don’t follow these recommendations

EfficientNet v2 is much faster

s

From 21 NVIDIA.

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

Convolutions

Layout choice influences performance: NCHW is slower than NHWC

Convolutions implemented for Tensor Cores require NHWC layout and are fastest when input tensors

are laid out in NHWC.

TensorFlow, Pytorch, MXNet support it

Performance of Convolution Weight Performance of Convolution Weight
Gradient with C = 1024, H = W = 14, Gradient with C = 1024, H=W =7,
K=1024,R=S=1 K=1024,R=S5S=3
300 300

250 1 250 1 ,
200 /\ 200 1
: v —e— NCHW data

(Vp)] (Vp)]
o o
53 150+ : : 53 150+ —— NHWC data
T T
= —

100 100
50 50
0 Y v T 0 T T T
2° 2% 27 28 29 27 2° 2 24 2?
N N
(a) (b)

Figure 2. Kernels that do not require a transpose (NHWC) perform better than
kernels that require one or more (NCHW). NVIDIA A 100-SXM4-80GB, CUDA 11.2,

cuDNN 8.1.

PyTorch:

input_data =
input_data.to(memory_format=torch.channels_last)
model = model.to(memory_format=torch.channels_last)

s

22 NVIDIA.

Convolutions

Performance of Forward Convolution with
K=64, N=64,H=W = 256

0.8 T L P Bt |
m
\E/ 0'6 ..
- —e— R=S=3
9O —~— R=S=5
-
e o). I . VO W 5 P FNBORR, Y. ;SRS SUISTRTRT S—— p_—w, 8
-
()]

0.2 ..

0.0 - . . : i i

2 4 §) 8 10 12 14 16

C

Figure 8. Specialized kernels for C = 4 speed up common first
layers in convolutional neural nets (NHWC data used). Choosing C =

4 or a multiple of 8 gives best performance. NVIDIA A100-5SXM4-
80GB, CUDA 11.2, cuDNN 8.1

s

23 <A NVIDIA.

Linear Layers

Batch size and the number of inputs and outputs to be divisible by 4
(TF32) /8 (FP16)/ 16 (INT8) to run efficiently on Tensor Cores.

For A100: be divisible by 32 (TF32) /64 (FP16) / 128 (INT8). /C
When #parameters |: batch size and #inputs and #outputs to be //‘
divisible by at least 64 and ideally 256. O 7770
\\0'0'4/
Larger values for batch size and the number of inputs and outputs nput ?gi{:é’@(Output
improve parallelization and efficiency. Neurons Q@}{&Q‘\Q. Neurons
SN
S =N\®

As a rough guideline, choose batch sizes and neuron counts greater \N
than 128 to avoid being limited by memory bandwidth (NVIDIA*A100- \Q
SXM4-80GB:; this threshold is similar for other A100 and V100 GPUs).

s

24 <A NVIDIA.

Performance benefits substantially from choosing vocabulary size to be a
multiple of 8 with both (a) cuBLAS version 10.1 and (b) cuBLAS version 11.0.
The projection layer uses 1024 inputs and a batch size of 5120. NVIDIA V100-
SXM2-16GB GPU

Weight gradient calculation for a fully-connected layer benefits from
padding batch size to be a multiple of 8 with both (a) cuBLAS version
10.1 and (b) cuBLAS version 11.0. The first fully-connected layer
(4096 outputs, 1024 inputs) from the Transformer feed-forward
network is shown. NVIDIA V100-SXM2-16GB GPU.

Transformers

Performance of Projection Layer on cuBLAS v10
with Inputs = 1024, Batch Size = 5120

100

Throughput (TFLOPS)

Performance of Feed-Forward Layer on cuBLAS v10
with Inputs = 1024, Outputs = 4096

100

Throughput (TFLOPS)

Forward Activation
Gradient

(a)

Weight

Gradient

80}

60}

40| -

20}

Forward Activation

Gradient

(a)

Weight
Gradient

Performance of Projection Layer on cuBLAS v11

100

Throughput (TFLOPS)

with Inputs = 1024, Batch Size = 5120

I V = 33708
B VvV = 33712

Forward Activation Weight

Gradient Gradient
(b)

Performance of Feed-Forward Layer on cuBLAS v11

Throughput (TFLOPS)

with Inputs = 1024, Outputs = 4096

1001 ; ; ;
80} -
[Batch = 4084
60 1|E==3 Batch = 4088
B Batch = 4095
I Batch = 4096
40+ .
20}
0
Forward Activation Weight
Gradient Gradient
(b)

25 <ANVIDIA.

* Background:
« GEMM
« Math and memory bounds
* GPU implementation -
» Tile and wave quantization 6 - i
* Understanding DNN performance:
 DNN Operation Categories
* Transformer architecture example
* What is the limit? Guide

« Recommendations I:

. Hierarchical models and UNets

Tensor cores

Convolutions

Linear layers

Transformer

- Mixed precision and sparsity

.- Memory aspect
- Gradient checkpc

- Operator fusi
P p! 10

-

Parallelism tgch S5

e Final recommenda

Mixed precision training
Example: FP32 training of Multibox SSD network

« Histogram shows activation gradient magnitudes throughout
FP32 training; both axes are logarithmic.

* Observations:

* Dynamic range of FP 16 would be sufficient
to cover the entire histogram. ©

- Without “shifting” the histogram, half of the activations
would be casted to O, however. ®

* ldea: “shifting” = multiplication with a scale factor!

* Concern: Do | need to run a full training in order to find the
scaling factor? - No, automatic mixed precision comes to the
rescue!l ©

Percentage of all activation gradient values

64

32

16

B ~ i 00

1/2
1/4
1/8
1/16
1/32
1/64
1/128
1/256

1/512

<

FP16 Representablerange

Become zero in FP16 FP16 denorms
> < >

60 -40 -36 -32 -29 .27 -25 %.23 .21 -19
0 -75 45 -38 -34 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 € -4 -2 0 2

17

15 %13 11 9 7 5 3 -1 1 3

log,(magnitude)

4

5

7 9 11 13 15
6 8 10 12 14 16

s

27 <A NVIDIA.

A note on data types

TF32 only makes sense

* Mixed precision training is mostly about the dynamic range
and less about the precision:

Sign Range Precision
— N\
+exponent > dynamic range v | eors SR
* significand field - precision 732 Range
_ . TENSOR FLOAT 32 (TF32) _
* TF32 is a great compromise between FP32 (same range)
and FP16 (same precision) TF32 Precision
* TF32 is automatically enabled in NGC containers FP16

* No code change is necessary!

BFLOAT16

s

28 <A NVIDIA.

How to use it?

In Pytorch
« Backward passes under autocast are not # initialize gradient scaler
recommended. scaler = GradScaler ()
: # training loop
* Backward ops run in the same dtype for epoch in epochs:
autocast chose for corresponding forward for input, target in data:
ops.

zero gradient buffers
_ _ optimizer.zero grad()
- scaler.step() first unscales the gradients of

the optimizer's assigned params. # forward pass with autocasting
with autocast():

. C output = model (input)
- If these gradients contain infs or NaNs, loss = loss_fn(output, target)

optimizer.step() is skipped.

call backward() on scaled loss
scaler.scale(loss) .backward ()

update if no issues
scaler.step (optimizer)

updates the scale for next iteration.
scaler.update ()

s

29 <A NVIDIA.

Am | use Tensor Cores?

https://pytorch.org/docs/stable/profiler.html

from torch import profiler

prof schedule = profiler.schedule(wait=2,
warmup=2,
active=5,
repeat=0)

callback =
profiler. tensorboard trace handler(‘'./log‘)

prof = profiler.profile(schedule=prof schedule,
on_ trace ready=callback,

record shapes=False,

with stack=False)

prof.start ()

for it in range (num iterations):
code to be profiled

prof.step ()

prof.stop ()

TensorBoard

NORMAL

Runs

log

Views

DIFF

PYTORCH_PROFILER

Kernel View

(O Alikernels (@ Top kernels to show 10

Total Time (us) (2

GPU Kernel

Workers

04db3076bd27_251

T

Group By
Kernel Name ~

wone__- [OW6] ©

Tensor Cores Utilization ()

® void @ Not Using Tensor Cores
at::native::vectorized_... @ Using Tensor Cores

@® void
cudnn::ops::nchwToN...

® void

cudnn::bn_bw_1C11_...
@ void at:native::vectori...
@ void cudnn::bn_bw_1...
@ void cutlass::Kernel<c...
@ void cutlass::Kernel<c...
® void cutlass::Kernel<c...
@ void cudnn:bn_fw_tr_...
@ void at::native::vectori...

Search by Kernel Name

Mean Mean Est.
Tensor Total Mean Max Min X
. . . . Blocks Achieved
Name Cores Calls Duration v Duration Duration Duration
Per Occupancy
Used (us) (us) (us) (us)
SM (%)
void
at::native::vectorized_elementwise_kern
el<4, at::native::BinaryFunctor<float,
float, float, at::native::AddFunctor<float>
. . No 7326 58529 8 229 2 331.99 66.02
>, at::detail::Array<char*, 3> >(int,
at::native::BinaryFunctor<float, float,
float, at::native::AddFunctor<float> >,
at::detail::Array<char*, 3>)
void
cudnn::ops::nchwToNhwcKernel<float,
float, float, false, true,
No 1614 44102 27 155 5 157.65 98.98
(cudnnKernelDataType_t)2>
(cudnn::ops::nchw2nhwc_params_t<floa
t>, float const*®, float)
/

30 <4 NVIDIA

https://pytorch.org/docs/stable/profiler.html

Ampere sparsity

2:4 Sparsity

2 out of 4 weights are zero
Pruning can be done by magnitude
Sometime requires finetuning

Up to 30% speed up

Available as part of APEX library

OOO000O
OOO0OO
OOO0O00O
OOO000O
OO0O0O
OOOO0O0O

o e
-

'1.'

i

- L

e ¥ g7

y o RN

o o

0.0.030.

->_ o 4
) > -
> -7
v
Tz
ez
rrrz
>
-zZ

Sparse matrix W Compressed matrix W

A100
Tensor Core

Dense Matrix Sparse Matrix

G C2 w2

“_/

Non-zero 2-bits
data values indices

31 <A NVIDIA.

« Background: +Mixed precision and sparsity
« GEMM . Memory aspect |
« Math and memory bounds . Parallelism S hnique

}.

* GPU implementation | - -+ Gradient check *

* Tile and wave quantizat’n 3 . . ". Final recom ” A "’ *
v’r

» Understanding DNN performance: - Operator fUSP, \

: Tensof RT o

 DNN Operation Categories
* Transformer architecture example

« What is the limit? Guide

!

 Recommendations I:
- Hierarchical models and UNets
e Tensor cores
« Convolutions

 Linear layers

Transformer

GPU memory

Model Weights

4 bytes * number of parameters for fp32 training

6 bytes * number of parameters for mixed precision training (maintains a model in
fp32 and one in fp16 in memory)

| NVIDIA-SMI 367.57 Driver Version: 367.57 |

O ptimizer States G0 Name | persistencem| busid Disp.A | Velatile Uncorr FCC |
L | fon Tere ferf Periteesereel . Mereryiisese | crunit Comevel
8 bytes * number of parameters for normal AdamW (maintains 2 states) | © Gerorce GTX 1080 Off | 0000:01:00.0 On | N/A |
| 72% 78C P2 90w / 200w | 7830MiB / B81@5MiB | 98% Default |
2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes | 1 cerorceox1om ot wooioaione o N/A |
| 2% 48C P8 13W / 200w | 1IMiB / B8113MiB | 0% Default |
4 bytes * number of parameters for optimizers like SGD with momentum Gerorce GTX 1030 Off | 0000:05:00.0 ot |
(maintains only 1 state)
| Processes: GPU Memory |
Gradients |0 ae6s O pyihen T 7655Mi5 |
|—8— 3081 £ compis S8
. 2 4233 C thon 7827M1B
4 bytes * number of parameters for either fp32 or mixed precision training = e -
(gradients are always kept in fp32)
Forward Activations
size depends on many factors, the key ones being sequence length, hidden size

and batch size
33 NVIDIA.

Data with model parallelism

Larger batchsize and larger models

= Data Parallelism = Model Parallelism
= Allows to speed up training = Allows for a bigger model
= All workers train on different data = All workers train on the same data
= All workers have the same copy of the model = Parts of the model are distributed across GPUs
= Neural network gradients (weight changes) are = Neural network activations are exchanged
exchanged
GPU1 ¢ o GPU2 g o GPU1 . ® GPU2 . ®

Averaging

e00000, 000000 oooooo oooooo
©000000 0000000 0000000 ooooooc
00000000 00000000 oooooooo 0000000

t) veraging . f ‘ '

s

o
>
o®
—

34 <A NVIDIA.

Model parallelism

* Pipeline (Inter-Layer) Parallelism A\y‘('//ﬂ\k‘\y,:,,,ﬁ\\v/'k\\\

N0 T\ ‘\" N oA

AT ‘\bllh 3 ‘ "
: : . 4// W (0"1’!.\\‘\", 0 WY AN o
 Split sets of layers across multiple devices \\’.‘yv‘;‘\\‘ W5 .\...,,:, .\w":fA“'.‘.'f/

0* S 50‘ ISR KA Q‘ ' Q‘
.‘\V.“'/ \\"P ‘AALAA:~ “ "':// \ “.

Vv & B //,m CHRES 'r..w 0» o"

NS 0 1R w" e '/m KA &

V)
X Q\ /'c,,'(,‘\\- o.,,"; g{\‘\ o,,n,\ :“»\

» Layer O,1,2 and layer 3,4,5 are on difference devices AN e N A .,,'
\\\‘w’*A 57NN /I» \“V/'

"A A‘\

A v v

* Tensor (Intra-Layer) Parallelism

(//A“\\\v,,,,A\\\(

\V \RVAY; ’
A‘t»‘vo"’/‘\"!% % ‘\“v‘c"A >

/ \\\/‘c RO ’lh‘ A0 W »/ \
- Ay e J
SR e e Ay
\
0' % \\‘0’" el 5‘:’; 4':‘:" "" "':"’ \V“ A0

‘ "\ “'. ‘\' \V,\". "’) "4"'\\ 'A \'
'/,

» Split individual layers across multiple devices

» Both devices compute different parts of Layer 0,1,2,3,4,5

V
‘\ ..,') ! \‘\ ,.., A n‘

'I» “
R
- ’ }\oh',"; O "’"'V \\\\\'.‘~"““"§\\'// "»‘
7/ \|

’lr 4\\\' ,{ }« '/', ‘\\
\‘"\\\V”"““‘V//)"/’

s

35 €A NVIDIA.

Gradient accumulation

 Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network —

into several mini-batches of samples that will be run sequentially.

MINI-BATCH
0

grado

l

GPU
MINI-BATCH s MINI-BATCH
1 2
WV WV
gradl grad2

—

MINI-BATCH

3

grad3

!

GLOBAL BATCH GRADIENTS

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

Time

WV

<A NVIDIA. I

Gradient accumulation

optimizer =

optimizer

NUM ACCUMULATION STEPS =

for epoch in range(...):
for 1, sample 1n enumerate (dataloader) :
inputs, labels = sample
optimizer.zero grad()

Forward Pass

outputs = model (inputs)

Compute Loss and Perform Back-
propagation

loss = loss fn(outputs, labels)

loss.backward ()

Update Optimizer optimizer.step ()

for epoch in range(...):

for 1dx, sample 1n enumerate (dataloader) :
inputs, labels = sample

Forward Pass

outputs = model (inputs)

Compute Loss and Perform Back-
loss = loss fn(outputs, labels)

Normalize the Gradients

loss = loss / NUM ACCUMULATION STEPS
loss.backward ()

if ((1dx + 1) % NUM_ACCUMULATION_STEPS ==
0) or (idx + 1 == len(dataloader)):

optimizer.zero grad()
Update Optimizer

optimizer.step ()

propagation

<ANVIDIA.

Activation Re-computation or gradient checkpointing

The memory intensive part of training deep neural networks is computing the gradient of the loss by
backpropagation.

By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in
between those nodes during backpropagation, it is possible to calculate gradients at reduced memory cost.

When training deep feed-forward neural networks consisting of n layers, you can reduce the memory consumption
to O(sqrt(n)), at the cost of performing one additional forward pass.

N T AT,
B, | | | [5

— b b |- b |- bl

NVIDIA.

Activation Re-computation or gradient checkpointing

Ao
—{ s

By _* l l " B

-— - b |- - «—
L

We might for instance simply recompute every node from the
forward pass each time we need it.

<A NVIDIA. I

Activation Re-computation or gradient checkpointing

Ag

O—be VfO >f Pf

By l l . B
— b b |~ b |~ h l—

checkpoint

YT
et

<

by
.

The strategy we use here is to mark a subset of the neural net
activations as checkpoint nodes.

—

<A NVIDIA. I

Activation Re-computation or gradient checkpointing

checkpoint

Q_.
Qﬂ%ﬁ%

IIIIIII

Activation recompute challenges
Activation Recompute

Checkpoint

Features
Map

Features Maps Recompute

("}
ta
2
©
L=

.

Balance the memory savings and computational overhead?

EANVIDIA. I

« Background:
« GEMM
* Math and memory bounds

* GPU implementation

-

- Tile and wave quantization a9 B

* Understanding DNN performance:
 DNN Operation Categories
* Transformer architecture example
* What is the limit? Guide
 Recommendations I:
» Hierarchical models and UNets
» Tensor cores
« Convolutions

 Linear layers

Transformer

- Mixed precision and sparsity

.- Memory aspect

- - Gradient cheékp ‘

© Final recommen

®

Parallelism tqct;am les

- Operator fusi
P p! 10

s ol
/
' \
v
| (M

r
‘%
p R

. Tensor RT .
$ ’)

AL
W: "
, i

| ' l

/i

M !l \. .

| \ '

Optimization techniques

Leverage AMP (Automatic Mixed Precision) Implement Parallelism

Activate Gradient Checkpoint Data

Empty CUDA Cache: Model
torch.cuda.empty_cache() Pipeline

Manually launch Garbage Collection: Tensor
Import gc Offload tensors to CPU (e.g. EMA, gradient checkpoint)
gc.collect() Overlap computing and communication

Enable 8-bit Adam Improve data loader

Remove bias for convolutional layers followed by batch Constant Buffer Optimization

normalization Contiguous Memory Optimization
Implement Gradient Accumulation Use Fused Kernel
Batch size divisible by 8 Low-Rank adaptation (specific for LLM)

Input/output channels:
FP16 multiplier of 16
INT8 — multiplier 32

s

24 NVIDIA.

Gradient
accumulation

Gradient
checkpointing

Mixed precision
training

Batch size
Optimizer choice

DatalLoader

DeepSpeed Zero

Optimization techniques

No

No

Yes

Yes

Yes

Yes

No

Yes

Yes

(No)

Yes
Yes

No

Yes

45

s

NVIDIA.

Important CUDNN flags

Important aspects to consider:

In NGC containers, the usage of TensorFloat-32 is
enabled by default in order to accelerate FP32
calculations using tensor cores on Ampere or newer
GPUs.

Certain classes of CUDA functions are a potential
source of non-determinism, such as atomicAdd,
where the order of parallel additions to the same
value is undetermined and, for floating-point
variables, a source of variance in the results.

cuDNN can automatically determine which
combination of primitives is most optimal. Only use

this flag when input sizes of a model are no changing!

get the cuDNN version
torch.backends.cudnn.version ()

check availability
torch.backends.cudnn.is _available()

enabling cuDNN (default = True)
torch.backends.cudnn.enabled = True

enabling TF32 (default = True for DL)
torch.backends.cudnn.allow_tf32 = True

enable determinism (default = False)
torch.backends.cudnn.deterministic = False

enable auto-tuning (default = False)
torch.backends.cudnn.benchmark = True

46

s

NVIDIA.

https://pytorch.org/docs/stable/backends.html

What is TensorRT?

1. Weight & Activation
Precision Calibration
Maximizes throughput by quantizing
models to INT8 while preserving accuracy

2. Layer & Tensor Fusion
Optimizes use of GPU memory and
bandwidth by fusing nodes in a kernel

3. Kernel Auto-Tuning
Selects best data layers and algorithms
, o based on target GPU platform

®© o 4. Dynamic Tensor Memory

Minimizes memory footprint and re-uses
Optimized Inference memory for tensors efficiently
Engine

Trained Neural
Network
5. Multi-Stream Execution

Scalable design to process multiple input
streams in parallel

6. Time Fusion

5. Optimizes recurrent neural networks over
time steps with dynamically generated
kernels

s

48 <ANVIDIA.

|
N

Thank you i =

»
> - ' |
) __& a
goo
Pavlo Molchanov, p‘Ichanov@ vidia. ' ‘ .
> & & X

Slides credit:

Giuseppe Fiameni gfiameni@nvidia.com s
Nikita Korobov nkorobov@nvidia.com AV
https://docs.nvidia. com/deeplearmng/performance/c}l p'rf@r nanc

'.-'
(s AN ,.a

Disclaimer: Results, numbers and performance pre re
For the exact performance please col\tact I\l\/I

. 4\\

mailto:gfiameni@nvidia.com

