
1

NN Performance optimization:
How to achieve more with less cost

Software perspective

Disclaimer: Results, numbers and performance are reported from the research perspective.
For the exact performance please contact NVIDIA product managers.

Pavlo Molchanov, pmolchanov@nvidia.com

Distinguished Research Scientist, Manager

Slides credit:
Giuseppe Fiameni gfiameni@nvidia.com
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html

mailto:pmolchanov@nvidia.com
mailto:gfiameni@nvidia.com

2

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 2 3 3

3 3 1 2 1 2

done in 4 minutes

Making toast fast

https://www.youtube.com/watch?v=gVPK81rI390

Pan – GPUs
Toast – layers or data

https://www.youtube.com/watch?v=gVPK81rI390

3

How long does it take to
fry 3 toast with a pan
if frying one side of
a toast takes 1 min?

1 2 1 3

3 2

done in 3 minutes

2 3

1

Making toast fast

https://www.youtube.com/watch?v=gVPK81rI390

Pan – GPUs
Toast – layers or data

https://www.youtube.com/watch?v=gVPK81rI390

• Background:
• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• What is the limit? Guide

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Tensor RT

5

§ Arithmetic and other instructions are executed by the
Streaming Multiprocessors (SMs).

§ Data and code are accessed from high-bandwidth DRAM
via the on-chip L2 cache.

§ Example - NVIDIA A100 GPU contains:

§ 108 SMs

§ 40 MB L2 cache

§ 80 GB of HBM2 memory with up to 2039 GB/s
bandwidth

on chip

off chip

GPU architecture SIMPLIFIED

6 6

• GEMMs (General Matrix Multiplications) are a fundamental building block for many operations in neural
networks:

• fully-connected layers

• recurrent layers such as RNNs, LSTMs or GRUs

• convolutional layers

• attention layers

• GEMM is defined as:

• with A and B as matrix inputs, α and β as scalar inputs, and C as a pre-existing matrix which is overwritten
by the output

Matrix matrix multiplications

7 7

• GEMM:

• Matrix A is an M x K; matrices B is K x N; and C is M x N matrices

• The product of A and B has M x N values. It requires a total of M * N * K fused multiply-adds (FMAs)

• Each FMA is 2 operations, a multiply and an add, so a total of 2 * M * N * K FLOPS are required

• α and β can be ignored if K is sufficiently large

• To understand performance:

• For Tensor Cores in V100 - FLOPS:B ratio is 138.9

• If MxNxK = 8192x128x8192, AI = 124.1 FLOPS/B – memory bound

• If MxNxK = 8192x8192x8192, AI = 2730 FLOPS/B – math bounded

Math and Memory bounds

8 8

• For FLOPS – multiply by 2

• Example how to calculate peak dense throughput for A100 GPU:

• 108 SMs

• 1.41 GHz clock rate

• 156 TF32 TFLOPS and 312 FP16 TFLOPS

Multiply-add operations per clock

9 9

• GEMMs is implemented by partitioning the output matrix into tiles, which are then assigned to thread
blocks:

Tiling is important: tile and wave quantization

GPU Implementation

10 10

Comparison of GEMM execution times with (a) cuBLAS 10.1 and (b) cuBLAS
11.0, both with FP16 data. Calculation is fastest (duration is lowest) when K is
divisible by 8. “NN” means A and B matrices are both accessed non-
transposed. NVIDIA V100-DGXS-16GB GPU.

Larger tiles run more efficiently. The 256x128-based GEMM runs
exactly one tile per SM, the other GEMMs generate more tiles based
on their respective tile sizes. NVIDIA A100-SXM4-80GB, CUDA 11.2,
cuBLAS 11.4.

Optimality

11 11

• Tile quantization occurs when matrix dimensions are not divisible by the thread block tile size.

Figure. Example of tiling with 128x128 thread block tiles. (a) Best case -
matrix dimensions are divisible by tile dimensions (b) Worse case - tile
quantization results in six thread blocks being launched, two of which
waste most of their work.

Tile Quantization

12 12

• Total number of tiles is quantized to the number of multiprocessors on the GPU.

Utilization of an 8-SM GPU when 12 thread blocks with an
occupancy of 1 block/SM at a time are launched for execution.

Example:
• An NVIDIA A100 GPU has 108 SMs
• Assume 256x128 thread block tiles, one thread block per SM - a wave size of 108 tiles that can

execute simultaneously
• Best utilization - #tiles is an integer multiple of 108 or just below

Wave quantization

13

• Background:

• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• How to find a problem?

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Tensor RT

14 14

• Three factors; memory bandwidth, math bandwidth and latency

• Operations can be memory-limited and math-limited

• Math limited if: #ops / #bytes > BWmath / BWmem

Memory and math limits, again

15 15

• Elementwise Operations:
• Each element is independent of all other elements in the tensor:

• Additional of two tensors

• Most non-linearities (sigmoid, tanh, etc.), scale, bias, add, and others.

• Tend to be memory-limited, as they perform few operations per byte accessed.

• Reduction Operations:
• Produce values computed over a range of input tensor values.

• Pooling layers, batch-normalization, layer-normalization, softmax.

• Have a low arithmetic intensity and thus are memory limited.

• Dot-Product Operations:
• Dot-products of elements from two tensors, like a weight tensor and an activation tensor.

• Fully-connected layers, attention, etc.

• Convolutions - one vector is the set of parameters for a filter, the other is an “unrolled” activation region

• Math-limited if the corresponding matrices are large enough

DNN Operation Categories

16

• Tensor Contractions

• Linear layers and components of Multi-Head Attention
all do batched matrix-matrix multiplications.

• Statistical Normalizations

• Softmax and layer normalization are less compute-
intensive than tensor contractions, and involve one or
more reduction operations.

• Element-wise Operators

• Biases, dropout, activations, and residual connections.

DATA MOVEMENT IS ALL YOU NEED: A CASE STUDY ON OPTIMIZING TRANSFORMERS https://arxiv.org/pdf/2007.00072.pdf

Transformer example

17 17

• Look up the number of SMs on the GPU, and determine the ops:bytes ratio for the GPU.

• Compute the arithmetic intensity for the algorithm.

• Determine if there is sufficient parallelism to saturate the GPU by estimating the number and size of
thread blocks.

• The most likely performance limiter is:

• Latency if there is not sufficient parallelism

• Math if there is sufficient parallelism and algorithm arithmetic intensity is higher than the GPU ops:byte
ratio.

• Memory if there is sufficient parallelism and algorithm arithmetic intensity is lower than the GPU
ops:byte ratio.

How to find a problem?

18

• Background:

• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• What is the limit? Guide

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Tensor RT

19 19

• 1. Operating In Math-Limited Regime Where Possible:

• If the speed of a routine is limited by calculation rate (math-limited or math-bound), performance can be
improved by enabling Tensor Cores.

• 2. Using Tensor Cores Efficiently With Alignment:

• Use parameter shapes such that compute is aligned with Tensor Cores characteristics to
minimize wave tails.

• 3. Choosing Parameters To Maximize Execution Efficiency:

• GPUs perform operations efficiently by dividing the work between many parallel processes

Recommendations I

20 20

• For memory limited layers (usually first layers):

• Use dense convolutions instead of depth-wise (especially for FP16, INT8)

• Minimize pooling (e.g. no squeeze-and-excitation layers)

• Avoid Layer Normalization

• Use BN and activations as they are foldable during inference (TRT does automatically)

• For math limited layers (usually later layers):

• Depth-wise should be fine

• SE works

• Layer normalization doesn’t hurt that much

• ReLU is the best activation as it can be fused with conv-BN

• For large image resolution use torch.nn.PixelShuffle(upscale_factor)

Recommendations for hierarchical models

21 21

• FP16 input/output channels for linear and conv should be multiplier 16, for INT8 – multiplier 32.

• Mini-batch to be a multiple of 8

• For sequence problems, pad the sequence length to be a multiple of 16 (FP16) or 32 (INT32)

• Concatenate matrices together like qkv for transformer

• EfficientNet v1 and MobileNet don’t follow these recommendations

• EfficientNet v2 is much faster

From https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html#opt-tensor-cores

Maximizing Tensor Core usage:

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html

22 22

• Layout choice influences performance: NCHW is slower than NHWC

• Convolutions implemented for Tensor Cores require NHWC layout and are fastest when input tensors
are laid out in NHWC.

• TensorFlow, Pytorch, MXNet support it

Figure 2. Kernels that do not require a transpose (NHWC) perform better than
kernels that require one or more (NCHW). NVIDIA A100-SXM4-80GB, CUDA 11.2,
cuDNN 8.1.

PyTorch:

input_data =
input_data.to(memory_format=torch.channels_last)
model = model.to(memory_format=torch.channels_last)

Convolutions

23 23

Figure 8. Specialized kernels for C = 4 speed up common first
layers in convolutional neural nets (NHWC data used). Choosing C =
4 or a multiple of 8 gives best performance. NVIDIA A100-SXM4-
80GB, CUDA 11.2, cuDNN 8.1

Convolutions

24 24

• Batch size and the number of inputs and outputs to be divisible by 4
(TF32) / 8 (FP16) / 16 (INT8) to run efficiently on Tensor Cores.

• For A100: be divisible by 32 (TF32) / 64 (FP16) / 128 (INT8).

• When #parameters ↓: batch size and #inputs and #outputs to be
divisible by at least 64 and ideally 256.

• Larger values for batch size and the number of inputs and outputs
improve parallelization and efficiency.

• As a rough guideline, choose batch sizes and neuron counts greater
than 128 to avoid being limited by memory bandwidth (NVIDIA®A100-
SXM4-80GB; this threshold is similar for other A100 and V100 GPUs).

Linear Layers

25 25

Transformers

Performance benefits substantially from choosing vocabulary size to be a
multiple of 8 with both (a) cuBLAS version 10.1 and (b) cuBLAS version 11.0.
The projection layer uses 1024 inputs and a batch size of 5120. NVIDIA V100-
SXM2-16GB GPU

Weight gradient calculation for a fully-connected layer benefits from
padding batch size to be a multiple of 8 with both (a) cuBLAS version
10.1 and (b) cuBLAS version 11.0. The first fully-connected layer
(4096 outputs, 1024 inputs) from the Transformer feed-forward
network is shown. NVIDIA V100-SXM2-16GB GPU.

26

• Background:

• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• What is the limit? Guide

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Operator fusion

• Tensor RT

27

Example: FP32 training of Multibox SSD network

• Histogram shows activation gradient magnitudes throughout
FP32 training; both axes are logarithmic.

• Observations:

• Dynamic range of FP16 would be sufficient
to cover the entire histogram. J

• Without “shifting” the histogram, half of the activations
would be casted to 0, however. L

• Idea: “shifting” = multiplication with a scale factor!

• Concern: Do I need to run a full training in order to find the
scaling factor? à No, automatic mixed precision comes to the
rescue! J

Mixed precision training

28

• Mixed precision training is mostly about the dynamic range
and less about the precision:

• exponent à dynamic range

• significand field à precision

• TF32 is a great compromise between FP32 (same range)
and FP16 (same precision)

• TF32 is automatically enabled in NGC containers

• No code change is necessary!

TF32 only makes sense

A note on data types

29

• Backward passes under autocast are not
recommended.

• Backward ops run in the same dtype
autocast chose for corresponding forward
ops.

• scaler.step() first unscales the gradients of
the optimizer's assigned params.

• If these gradients contain infs or NaNs,
optimizer.step() is skipped.

initialize gradient scaler
scaler = GradScaler()

training loop
for epoch in epochs:
 for input, target in data:

 # zero gradient buffers
 optimizer.zero_grad()

 # forward pass with autocasting
 with autocast():
 output = model(input)
 loss = loss_fn(output, target)

 # call backward() on scaled loss
 scaler.scale(loss).backward()

 # update if no issues
 scaler.step(optimizer)

 # updates the scale for next iteration.
 scaler.update()

How to use it?

In Pytorch

30

Am I use Tensor Cores?

https://pytorch.org/docs/stable/profiler.html

from torch import profiler

prof_schedule = profiler.schedule(wait=2,
warmup=2,
active=5,
repeat=0)

callback =
profiler.tensorboard_trace_handler(‘./log‘)

prof = profiler.profile(schedule=prof_schedule,
on_trace_ready=callback,
record_shapes=False,
with_stack=False)

prof.start()

for it in range(num_iterations):
code to be profiled
...
prof.step()

prof.stop()

https://pytorch.org/docs/stable/profiler.html

31 31

● 2 out of 4 weights are zero

● Pruning can be done by magnitude

● Sometime requires finetuning

● Up to 30% speed up

● Available as part of APEX library

2:4 Sparsity

Ampere sparsity

32

• Background:

• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• What is the limit? Guide

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Operator fusion

• Tensor RT

33 33

•Model Weights
•4 bytes * number of parameters for fp32 training
•6 bytes * number of parameters for mixed precision training (maintains a model in
fp32 and one in fp16 in memory)

•Optimizer States
•8 bytes * number of parameters for normal AdamW (maintains 2 states)
•2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes
•4 bytes * number of parameters for optimizers like SGD with momentum
(maintains only 1 state)

•Gradients
•4 bytes * number of parameters for either fp32 or mixed precision training
(gradients are always kept in fp32)

•Forward Activations
•size depends on many factors, the key ones being sequence length, hidden size
and batch size

During training

GPU memory

34

§Data Parallelism

§ Allows to speed up training

§ All workers train on different data

§ All workers have the same copy of the model

§ Neural network gradients (weight changes) are
exchanged

§Model Parallelism

§ Allows for a bigger model

§ All workers train on the same data

§ Parts of the model are distributed across GPUs

§ Neural network activations are exchanged

GPU1 GPU2
Averaging

Averaging

Averaging

Averaging

GPU2GPU1

Larger batchsize and larger models

Data with model parallelism

35

•Pipeline (Inter-Layer) Parallelism

• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

• Tensor (Intra-Layer) Parallelism

• Split individual layers across multiple devices

• Both devices compute different parts of Layer 0,1,2,3,4,5

Model parallelism

• Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network —

into several mini-batches of samples that will be run sequentially.

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa

Gradient accumulation

Gradient accumulation

optimizer = ...

for epoch in range(...):
for i, sample in enumerate(dataloader):

inputs, labels = sample
optimizer.zero_grad()
Forward Pass
outputs = model(inputs)
Compute Loss and Perform Back-
propagation
loss = loss_fn(outputs, labels)
loss.backward()
Update Optimizer optimizer.step()

optimizer = ...

NUM_ACCUMULATION_STEPS = ...

for epoch in range(...):

for idx, sample in enumerate(dataloader):

inputs, labels = sample

Forward Pass

outputs = model(inputs)

Compute Loss and Perform Back- propagation

loss = loss_fn(outputs, labels)

Normalize the Gradients

loss = loss / NUM_ACCUMULATION_STEPS

loss.backward()

if ((idx + 1) % NUM_ACCUMULATION_STEPS ==
0) or (idx + 1 == len(dataloader)):

optimizer.zero_grad()

Update Optimizer

optimizer.step()

Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

• The memory intensive part of training deep neural networks is computing the gradient of the loss by
backpropagation.

• By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in
between those nodes during backpropagation, it is possible to calculate gradients at reduced memory cost.

• When training deep feed-forward neural networks consisting of n layers, you can reduce the memory consumption
to O(sqrt(n)), at the cost of performing one additional forward pass.

https://github.com/cybertronai/gradient-checkpointing

Activation Re-computation or gradient checkpointing

We might for instance simply recompute every node from the
forward pass each time we need it.

Activation Re-computation or gradient checkpointing

The strategy we use here is to mark a subset of the neural net
activations as checkpoint nodes.

Activation Re-computation or gradient checkpointing

Activation recompute challenges
Activation Recompute

Balance the memory savings and computational overhead?

43

• Background:

• GEMM

• Math and memory bounds

• GPU implementation

• Tile and wave quantization

• Understanding DNN performance:

• DNN Operation Categories

• Transformer architecture example

• What is the limit? Guide

• Recommendations I:

• Hierarchical models and UNets

• Tensor cores

• Convolutions

• Linear layers

• Transformer

• Mixed precision and sparsity

• Memory aspect

• Parallelism techniques

• Gradient checkpointing / accumulation

• Final recommendations

• Operator fusion

• Tensor RT

44

Optimization techniques

• Leverage AMP (Automatic Mixed Precision)

• Activate Gradient Checkpoint

• Empty CUDA Cache:

• torch.cuda.empty_cache()

• Manually launch Garbage Collection:

• Import gc

• gc.collect()

• Enable 8-bit Adam

• Remove bias for convolutional layers followed by batch
normalization

• Implement Gradient Accumulation

• Batch size divisible by 8

• Input/output channels:

• FP16 multiplier of 16

• INT8 – multiplier 32

• Implement Parallelism

• Data

• Model

• Pipeline

• Tensor

• Offload tensors to CPU (e.g. EMA, gradient checkpoint)

• Overlap computing and communication

• Improve data loader

• Constant Buffer Optimization

• Contiguous Memory Optimization

• Use Fused Kernel

• Low-Rank adaptation (specific for LLM)

45

Optimization techniques

Method Speed Memory

Gradient
accumulation

No Yes

Gradient
checkpointing

No Yes

Mixed precision
training

Yes (No)

Batch size Yes Yes

Optimizer choice Yes Yes

DataLoader Yes No

DeepSpeed Zero No Yes

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one

46

Important CUDNN flags
https://pytorch.org/docs/stable/backends.html#torch-backends-cudnn

Important aspects to consider:

• In NGC containers, the usage of TensorFloat-32 is
enabled by default in order to accelerate FP32
calculations using tensor cores on Ampere or newer
GPUs.

• Certain classes of CUDA functions are a potential
source of non-determinism, such as atomicAdd,
where the order of parallel additions to the same
value is undetermined and, for floating-point
variables, a source of variance in the results.

• cuDNN can automatically determine which
combination of primitives is most optimal. Only use
this flag when input sizes of a model are no changing!

get the cuDNN version
torch.backends.cudnn.version()

check availability
torch.backends.cudnn.is_available()

enabling cuDNN (default = True)
torch.backends.cudnn.enabled = True

enabling TF32 (default = True for DL)
torch.backends.cudnn.allow_tf32 = True

enable determinism (default = False)
torch.backends.cudnn.deterministic = False

enable auto-tuning (default = False)
torch.backends.cudnn.benchmark = True

https://pytorch.org/docs/stable/backends.html

48 48

What is TensorRT?

49

Thank you

Disclaimer: Results, numbers and performance are reported from the research perspective.
For the exact performance please contact NVIDIA product managers

Pavlo Molchanov, pmolchanov@nvidia.com

Slides credit:
Giuseppe Fiameni gfiameni@nvidia.com
Nikita Korobov nkorobov@nvidia.com
https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html

mailto:gfiameni@nvidia.com

