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CPU

Jack of all trades. Master of none

* Flexible instruction stream
* Handle complex control flow programs

* Memory system for low latency
 Fast local memory close to the compute (registers)

« Caches provide locality benefits
* Lower core count/thread count
* Very good for complex control flow programs

+ SIMD (Single Instruction Multiple Data)
+ Same operation on multiple pieces of data in parallel
* Vector operations through vector extension units

* Viable for vector codes with limited parallelism
« Or lower memory requirements

+ Typically coordinates the system
+ Some level of good performance benefits attached accelerators
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https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html

GPU

Highly Parallel
* Fully programmable .
time
+ Designed for parallel compute >
* Supported with high bandwidth memory system I
- Efficient when operating in converged (lock step) SM ——
* Supports divergent behavior unlike SIMD (vector) engines =
i
[y
N AN J
k.3 W
wave 0 wave 1 (tail)

Figure 3. Utilization of an 8-SM GPU when 12 thread blocks with an occupancy of 1
block/SM at a time are launched for execution. Here, the blocks execute in 2 waves,
the first wave utilizes 100% of the GPU, while the 2nd wave utilizes only 50%.

Figure 1. Simplified view of the GPU architecture

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. Figures from: https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html nViDIA I



GPU

Full system

 Full system has large amount of capability
* Memory system built for high throughput
+ Memory request coalescing
» Custom units for specific common operations
 Includes tensor cores for tensor math operations
* Tensor Memory Accelerator for efficient tensor memory accesses

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

FullH100: 144 SMs

Supports multiple data formats: int8, FP32, FP16, BF 16, FP8

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LoV
8T

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FPaz
FPaz
FP32
FP32
FP32
FPaz
FP3z

Lov
ST

Hopper SM

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadiclk)

Register File (16,384 x 32-bit)

FP32 FPE4
FP32 FPE4
FP32 FPE4
FP32 FPE4
FP32 FPE4
FP32 FP&4
FPaZ FP&4
FP32 FPE4
FP32 FP&4
FP32 FP84
FP32 FPE4
FP32 FPE4
FP32 FP84
] FP&4
FP32 FPE4
FPaz FPE4
(TR Y. ]

BT =T

Dispatch Unit (32 threadiclk)
Register File (16,384 x 32-bit)

FP32 FP&4
FPa2 FP&4
FP32 FP&4
FP32 FPB4
FP32 FP&4
FP32 FP&4
FP32 FP&4
FP32 FPB4
FP32 FP&4
FPa2 FP&4
FP32 FP84
FPaz FP&4
FPa2 FP&4
FPa2 FP&4
FP32 FPB4
FP32 FPB4
L W LY LD L LY
BT ST ST 8T ST 8T

TENSOR CORE
4™ GENERATION

TENSOR CORE
4™ GENERATION

SFU

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
Lo
ST

INT32
INT3Z
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

Lo
ST

L0 Instruction Cache
Warp Scheduler (32 thread/cik)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP3Z FP2 FPE4
FP32 FP32 FP&4
FPI2 FP32 FPE4
FP32 FPa2 FP&4
FP32 FP32 FP&4
FPI2 FP32 FPe4
FP32 FP32 FP64
FPIZ FP32 FP64
FPIZ FP32 FP&4
FP32 FPa2 FPE4
FPI2 FP32 FP&4
FP32 FP32 FP64
FPI2 FP32 FP&4
FPI2 FP32 FPE4
FP32 FP32 FPE4
FP32 FP32 FPE4
Lo Lov Lo Lo Lor Lor Lo
ST ST ST 87 ST ST 8T

T krclon Gt

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File {16,384 x 32-bit)

FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP&4
FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP84
FP32 FP84
FP32 FPS4
FP32 FP84
FP32 FPB4
FP32 FPs4
FP32 FP84

Lo LOf LDf LD LD

ST ST ST ST ST

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

Tex

SFU

TENSOR CORE
4" GENERATION

TENSOR CORE
4" GENERATION

<A NVIDIA. I



Mapping Work To The System

Tiling for GPU
N
* Memory changes as you get closer to compute N
+ Higher bandwidth, lower size B matrix
+ Split problem up to fit in memory system
* Problem is typically tiled to split the problem up } Kille
Ko<
Niile
K
A matrix C matrix
M Block,,,
}MH-& }Mﬁn‘e
—_— —
Kille Nille:
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Systolic Array

Array of ALUs or processing elements (PEs)

Each PE typically simple
* Small local storage
« Simple set of operations

Buffer

Data flows through the array
« Each PE computes a part of the results and passes data along

Paired with a host
* Host interacts with a controller to decide operations

Can be efficient if the problem maps well to the system

Has limited flexibility due to application specific nature

Problem needs to map well to the hardware array shape and flow

Examples:
« TPU!, Eyeriss?

1. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017
2. Chen el al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. ISCA 2016
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Custom Accelerators

NVDLA is a custom accelerator for DL models
Example of a more specialized hardware accelerator

Configurable instead of programmable CSB internupt
High efficiency for the networks they accelerate

NVDLA is targeted for inference

NVDLA works for specific data types: int8, int16, fp16

Custom accelerators require a good software eco system
NVIDIA provides tools such as TensorRT to generate network configs

Commonly used in edge inference
NVDLA available in Jetson systems such as Orin

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

Kemory

interface block

Headless NVDLA core

Configurafion interface block

» Convolution buffer - » Convolution core:

¥

» Activation engine (SOP)

L

» Pooling engine (PDOP)

L

» Local resp. norm (CDP)

»  Reshape (RUBIK)

N Bridge DMA

NVIDIA.



System On Chips

SoCs
+ Contains multiple compute engines on single chip ; . ; .
Figure 2: Orin System-on-Chip (SoC) Block Diagram
* CPUs, GPUs, and accelerators
. Shared memory System x22 PCle . x1 10GbE | x16 CSI
+ Common usage on edge devices
 Data flows between components 4x Cortex-A78
* Application components run on most suitable engine 2 MB 13

+ Requires more complex management (better eco system)
4x Cortex-A78

2 MB L3
HDR ISP
4x Cortex-A78

2 MB 13 VIDEO DECODE
* Examples
* Nvidia Jetson Orin Lockstep R52s VIDEO ENCODE
° Appl e M 2 3 I.'i“.‘l SRP‘\P\"I

4 MB System Cache

256-bit LPDDR5

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <INVIDIA. I



Importance of Memory Accesses

General Accelerator Example

Data Movement
A

Energycosts |

Why is 8-bit Integer Multiply

memory movement critical ?

Fetch two 8-bit operands from DRAM

Efficiency/Energy

Register
File

Register
File
Register
File

Register
File

0.2 pJ
128 pJ

Fetch two 8-bit operands from large SRAM 2 pJ

Figures are from Timeloop tutorial
Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

<A NVIDIA. I


http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf

Importance of Mapping

Leverage reuse for efficiency

7-dimensional network layer 2D hardware array

y = ghts InPUts DUtpLItS \ -
S H= PE
Q+5-1 Q
K

4 map
VAR—J:J *W'/C’ — > PE

PE| | PE| | PE
PE| | PE| | PE
PE| | PE| | PE
PE| | PE| | PE| | PE

Hardware
Reuse

Algorithmic
Reuse

Convolutional Reuse

« Slide filter over input plane
Input Activation Reuse

* Multiple filter blocks over same inputs
Output Activation Reuse

* Accumulation sum over channels
Batch Reuse

* Re-apply filters to new inputs

Temporal

Multicast

DRAM Buf

Forwarding

o<§ &332

I'IiJ —

Flexible architectures may allow millions of alternative mappings of a single workload

’ LWIDIA. A I

Figures are from Timeloop tutorial


http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf

Importance of Good Mappings

480,000 mappings shown
16000 A
14000 Spread: 19x in energy efficiency
812000 Only 1 is optimal, 9 others within 1%
EIOODB
~§ A model needs a mapper to evaluate a
g 8000 DNN workload on an architecture
[
2 6000
4000 6,582 mappings have min. DRAM accesses
but vary 11x in energy efficiency
2000
0. A mapper needs a good cost model to find

20 40 60 80 an optimal mapping
pJ/MACC relative to multiplier energy

Figures are from Timeloop tutorial

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <INVIDIA. I
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Timeloop and Accelergy

Tools for determining efficient mappings

MAPPER

Workload Spec "’ Mapspace

/ Construction
v

Mapspace
Constraints

Arch Spec

—-

Mapping

Target every architecture supported by Model

MODEL
Energy
Tile uArch
Analysis Model Perf
l T Area

ACCELERGY

Model variety of DNN accelerators

Figures are from Timeloop tutorial

More information at https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

<ANVIDIA. I
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Common Concepts for Performance

Latency
Time to complete an operation
Units: time before work complete
Example
Add operation -1 cycles
Divide operation - 8 cycles
Function call/return - 10 ns
Energy Per Operation
Average energy to complete an operation
Example:
10 pJ per Op

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

Throughput
Rate at which a work can be completed
Units: work per unit time
Example:
Frames per second (FPS)
Bytes per second (Bps)
Power
Rate at which energy is used
Example:
System TDP: 30 Watts (W)

Perf per Watt
Performance metric per Watt
Measures efficiency
Example:
FLOPS/Watt

NVIDIA.



Latency Vs Throughput

System delivers throughput of 30 FPS

What is the latency of this system?
1/30 seconds ~33 ms
1/15 seconds ~ 66ms
1 second ~ 1000 ms
2 seconds ~ 2000 ms

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. NVIDIA.



Latency Vs Throughput

System delivers throughput of 30 FPS

What is the latency of this system?
1/30 seconds ~33 ms
1/15 seconds ~ 66ms
1 second ~ 1000 ms
2 seconds ~ 2000 ms

The answer is yes.

All of them could be right!

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. NVIDIA.



Latency Vs Throughput

A simple example

+ System delivers throughput of 30 FPS

* What is the latency of this system?
A. 1/30 seconds ~33 ms (1 frame per batch)
B. 1/15 seconds ~ 66ms ( 2 frames per batch)
C. 1second ~ 1000 ms (30 frames per batch)
D. 2 seconds ~ 2000 ms (60 frames per batch)

The answer is yes.
All of them could be right!

I -1 frame They all produce 30 FPS!
. . Throughput may not be
enough specification!
33.3 66.6 99.9 133.2

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <ANVIDIA. I



Common Concepts for Performance

Compute Bandwidth Memory Bandwidth
Operations per unit time Bytes per unit Time
Example: Example:
1024 Math units, 1 GHz clock, 1 Operation per clock 1 GB, in 5 seconds
1024 x (1 x 10%) / 1 = 1024 GOPs Compute Bandwidth 200 MB/s
1024 Math units, 1 GHz clock, 2 Operation per clock Memory Bandwidth Utilization
1024 > (1% 10%)/ 1 = 512 GOPs Compute Bandwidth Fraction of peak memory bandwidth achieved
Compute Bandwidth Utilization Example:
Fraction of peak compute bandwidth achieved Peak: 1TB/s
Example: Achieved: 200 GB/s
Peak: 1 TFLOPS Memory Bandwidth Utilization: 200 x 10°/ 1 x 10'2 = .20 or
Achieved: 400 GFLOPS 20%
Coznoy:())/ute Bandwidth Utilization: 400 x 10°/ 1 x 10'2 = .40 Arithmetic Intensity
or ()

Flops per byte fetched
Correlates with data reuse
Example:
32 FLOPs
17 Bytes fetched
Arithmetic Intensity: 32 / 17 = 1.88 FLOPs/Byte

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

NVIDIA.



Estimating Performance

Compute the FLOPs in the layers
3x3 Conv2d with bias, Input is 1x3x416x480, Outputis 1x16x208x240
FLOPs = ((3x3) x 3 +1) x16 x 208 x 240 * 2= 22364160 * 2 = 44,728,320
FP32 Input tensor: 3x416x480%4 = 2,396,160
FP32 QOutput tensor: 16x208%x240%4 = 3,194,880
FP32 Parameters: (3x3x3) x 16 + 16 = 448
Tools like torchinfo give can give you this

Use the system peak compute and memory bandwidth to estimate performance
Assume peak compute bandwidth of 1 TOPS (1x10'2 OPs)
Best case: 44,728,320/ 1x10'2=0.00004472832 s = 44.8 ns compute
Assume peak memory bandwidth of 1000 GB/s
Best case: 559104 / 1000x10° = 0.00000559104 s =5.6 ns memory transfer

Realistically you assume some derating factor but now at least it is bounded

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.
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Understanding Performance

» Operations can be memory-limited and math-limited
- Math limited - High utilization of the compute units while the memory bandwidth utilization is not high
* Math limited if: (BWmath / PeakBWmath) ~> .7
* Memory limited - High utilization of the memory bandwidth while the compute unit utilization is not high
* Mem limited if: ( BWmem / PeakBWmem ) ~>.7

+ Using Arithemtic intensity for estimating limitations
* Math limited if: #ops / #bytes > PeakBWmath / PeakBWmem

Table 1. Examples of neural network operations with their arithmetic intensities. Limiters
assume FP16 data and an NVIDIA V100 GPU.

Operation Arithmetic Intensity Usually limited by...
Linear layer (4096 outputs, 315 FLOPS/B arithmetic

1024 inputs, batch size 512)

Linear layer (4096 outputs, 1 FLOPS/B memory

1024 inputs, batch size 1)

Max pooling with 3x3 window |2.25 FLOPS/B memory

and unit stride

ReLU activation 0.25 FLOPS/B memory

Layer normalization <10 FLOPS/B memory

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

B - byte

b - bit

<ANVIDIA. I



4 Quadrants of Bandwidth
Top Right is optimal

Low Memory High Memory
Bandwidth Utilization Bandwidth Utilization

High Compute Compute Full use of
Bandwidth Utilization Limited platform
Low Compute Code very Memory
Bandwidth Utilization unoptimized Limited

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <INVIDIA. I



Hints on handling issues

Compute bandwidth limited
Move to a different numerical format
Some hardware supports more compute with smaller format
Rework the algorithm to use less compute
Due to parallelism small changes may not impact performance
Use structured sparsity
2:4 structured sparsity approx. doubles the FLOPSs
Use specialized hardware
Tensor cores

Memory bandwidth limited
Move to a different numerical format
You can move more operands in the same memory bandwidth
Overlap memory transfers
Restructure your data

Some data structures make better use of the memory transfers

Resize the problem

Compute and Memory bandwidth limited
Reformulate the problem
Refactor the code

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

Peak FP64!

Peak FP64 Tensor Core1

Peak FP32!

Peak FP16'

Peak BF16

Peak TF32 Tensor Core]

Peak FPWE)TensorCore1

Peak BF 16 Tensor Core!

Peak FP8 Tensor Core1

Peak INT8 Tensor Core

NVIDIA H100 SXMS]

30 TFLOPS

60 TFLOPS

60 TFLOPS

120 TFLOPS

120 TFLOPS

500 TFLOPS | 1000 TFLOPS?
1000 TFLOPS | 2000 TFLO P82
1000 TFLOPS | 2000 TFLOPSZ
2000 TFLOPS | 4000 TFLO P52

2000 TOPS | 4000 TOP52

Table 1. NVIDIA H100 Tensor Core GPU preliminary performance specs

NVIDIA H100 PCle L

24 TFLOPS

48 TFLOPS

48 TFLOPS

96 TFLOPS

96 TFLOPS

400 TFLOPS | 800 TFLOPS?
800 TFLOPS | 1600 TFLOP82
800 TFLOPS | 1600 TFLOPSZ
1600 TFLOPS | 3200 TFLOPS2

1600 TOPS | 3200 TOF’S2

Remember: With NVIDIA GPUs, you can always write a
custom kernel to for greater efficiency and control



Trained Neural
Network

What is TensorRT?

Optimized Inference
Engine

Figures are from TensorRT SDK | NVIDIA Developer

. Weight & Activation

Precision Calibration
Maximizes throughput by quantizing
models to INT8 while preserving accuracy

. Layer & Tensor Fusion

Optimizes use of GPU memory and
bandwidth by fusing nodes in a kernel

. Kernel Auto-Tuning

Selects best data layers and algorithms
based on target GPU platform

. Dynamic Tensor Memory

Minimizes memory footprint and re-uses
memory for tensors efficiently

. Multi-Stream Execution

Scalable design to process multiple input
streams in parallel

. Time Fusion

Optimizes recurrent neural networks over
time steps with dynamically generated
kernels

o ~zaPVRb


https://developer.nvidia.com/tensorrt

. Weight & Activation

Precision Calibration

Maximizes throughput by quantizing
models to INT8 while preserving accuracy

. Layer & Tensor Fusion
Optimizes use of GPU memory and
bandwidth by fusing nodes in a kernel

. Kernel Auto-Tuning
Selects best data layers and algorithms
based on target GPU platform

. Dynamic Tensor Memory
Minimizes memory footprint and re-uses
memory for tensors efficiently

. Multi-Stream Execution

Scalable design to process multiple input
streams in parallel

. Time Fusion

Optimizes recurrent neural networks over
time steps with dynamically generated
kernels

e

TensorRT
What does it do?

Convert the model to int8 using common static techniques. It does not require retraining to generate the
new operands

Combine common operations to avoid overheads of launching separate kernels or taking round trips to memory

Explores various transforms that may be more efficient ways of performing the operations of a layer. For
example, it may transform a convolution into a Winograd convolution if that is more efficient. It may
change the way it tiles the problem based on the hardware it is targeting.

Release memory that may not be used after the current operation

Independent data streams can share the hardware spatially (run at the same time) on different pieces of
the hardware.

Optimize the time step expansion of RNNs

<ANVIDIA. I



TensorRT

Summary

Tool to optimize networks

Takes a network and generates a highly optimized version

Can target specific hardware, including DLA
+ Can use both GPU and DLA to run network
- Can determine which is best for a given layer and set it to run there

Uses a special runtime engine for optimized network execution

Integrations into PyTorch and TF
« TF: tensorflow-gpu has integrations and just needs tensorRT to be installed
* PyTorch: torch-tensorrt is available.
- Also, NVIDIA provides NGC docker images with these integrations ready to use (ngc.nvidia.com)

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <ANVIDIA. I


https://github.com/tensorflow/tensorrt
https://github.com/pytorch/TensorRT
https://catalog.ngc.nvidia.com/?filters=&orderBy=weightPopularASC&query=

NVIDIA Profiling Tools
Suite Of Applications

* Nsight Systems (nsys)
* Provides primarily system level information
* Timing performance
* Memory Bandwidth
* Tensor core utilization

5

Start here o

r_
()

* And many more

Recheck overall
workload behavior

Recheck overall
workload behavior

* Nsight Compute
* Provides kernel level information
+ Kernel FLOPS
* Memory Usage

Dive into top

CUDA kernels Dive into graphics

frames

* SM Occupancy

v

Finished if
performance
satisfactory

* And many more

Figure 1. Flowchart describing working with new NVIDIA Nsight tools for performance optimization

NVIDIA Developer Tools Overview | NVIDIA
Developer

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <INVIDIA. I
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Nsight System

+ Used to get system information during execution
« Kernel latency, timeline etc

« Can be used as a gui

= Timeline View - | Q 1x lT B
265 v | +18€:.8ms i +18l7ms +18?l’2m5

/% 9 warnings, 20 messa
Ams i +18!§.5m5 i +182§‘8m5

~ [23310] python3

~ CUDA HW (0000:47:00.1
~ [All Streams]
* 97.2% Kernels
30.3% ampere_ 1

22.7% elementwise_

-

-

ampere_sgemm_128x128_nn
Begins: 26.1874s

Ends: 26.1884s (+971.390 o) (void atnatiei| void tina.|
grid: <<<1,1,8192>>>
block: <<<256, 1, 1>>>
Launch Type: Regular

12 kernel gre — + Static Shared Memory: 16,640 bytes _

Dynamic Shared Memory: 0 bytes

-

-

7.0% vectorized_lay

-

6.3% vectorized_ele

2.8% Memory / Registers Per Thread: 118
~ >99.9% Default strear v Local Memory Per Thread: 0 bytes
» 972%Kemels 1 . |Local Memory Total: 201,719,808 bytes
T Shared Memory executed: 102,400 bytes
4] [ ] Shared Memory Bank Size: 4 B I
—_— Theoretical occupancy: 25 %
Events View b |

Launched from thread: 23310
Latency: —=2.311 ms
Correlation D: 16941

Stream: Default stream 7 I Description:

‘Name 'H
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Nsight System

Command Line: Generating a report

* nsys profile -w true -t cuda,nvtx,osrt,cudnn,cublas -s none -f true -
X true --capture-range=cudaProfilerApi --capture-range-end=repeat python3 train.py

* nsys profile — runs nsight system

 -w true: send output to std out

« -t cuda,nvtx,osrt,cudnn,cublas: trace these api calls

* -s none: disable cpu sampling. Could turn on if care about CPU code

- -f true: force the overwrite if filenames exist
* -x true: stop profiling on exit

« --capture-range=cudaProfilerApi: how to capture. This mode is set up for a call to start in
code. Could be from the beginning

- --capture-range-end=repeat: what to ends the capture range. This says we can repeatedly turn it
on and off with a call in the python code

« python3 train.py: command to run nsys profile on

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. <INVIDIA. I



Nsight System

Generate Stats

° nsys stats --force-export --force-overwrite --format csv --output . --report
cudaapisum, cudaapitrace, nvtxkernsum, nvtxsesum, gpumemsizesum, gpumemtimesum, gputrace, gpukerns
.nsys-rep

um

nsys stats:
--force-export: force to read report file and not use pregenerated sql file
--force-overwrite: force overwriting output if already exists

--format csv: output format

--output
--report

run stats generation

the output files

cudaapisum, cudaapitrace, nvtxkernsum, nvtxsesum, gpumemsizesum, gpumemtimesum, gputrace, gpukernsum:

the reports to generate

.nsys-rep: nsys profile result to use for generating stats

Time (%) lTotaI Time Instances Avg(ns) Med(ns) Min(ns) Max(ns) StdDev(ns Name
39208 void cudnn::bn_fw_inf_1C11_kernel_NCHW<float, float, (bool)1, (int)1>(T2, T2, cudnnTensorStruct, const T1 *, cudnnTensorStruct, T1 *, cudnnTensorStruct, const T2 *

22 2.39E+08
15.9 1.72E+08
12.6 1.36E+08
11.5 1.24E+08
11.2 1.21E+08

5300
2300
4900
4800
1600

45135.4
74873.1
27840.4
25914.9

75810

40960
64383.5
10816
11904
45216

10977
34528
5345
5408
16736

153919
121599
128256
130528
178304

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

19662.9 void cutlass::Kernel<cutlass_80_tensorop_s1688gemm_256x64_16x4_nn_align4>(T1::Params)

32642.9 void at::native::vectorized_elementwise_kernel<(int)4, at::native::<unnamed>::launch_clamp_scalar(at::TensorlteratorBase &, c10::Scalar, c10::Scalar, at::native::dets
29270.2 void cudnn::ops::nchwToNhwcKernel<float, float, float, (bool)0, (bool)1, (cudnnKernelDataType_t)2>(cudnn::ops::nchw2nhwc_params_t<T3>, const T1 *, T2 *)
54248 void at::native::vectorized_elementwise_kernel<(int)4, at::native::BinaryFunctor<float, float, float, at::native::AddFunctor<float>>, at::detail::Array<char *, {int)3>>(int

Gpukernsum csv output example for ResNet50. Top 5 kernels.

<ANVIDIA. I



NSYS GUI

w/NVTX Regions

| = Timeline View v Qx /% 9 warnings, 20 messages
255 .,' +185ms +190ms +195ms +200ms +2[}5ms +21Dms +215ms +220ms +225ms +230ms +235ms +24U=‘ns +245ms +250ms e

2.8% Memory Q

~ 299.9% Defaultstream, @IIIIIIII.IIIIIIEIIIIIIHIIIIIIIIMIIIIIIHIIIIIIIIIWIilllllli]liillll’ilillllllllil AR SRR IIIIIIIIIIIIiIIiIIIIIIIIIIIIIIIImIﬁII
> 97.2% Kerels llmummnmmmmmnmmmnmmummmmmmmmmmmmmmmm

'2.8%Memory .. ] 1 I 1 = 1 1 8 1 1 8 I 1 3 I 12 I 1 2 I 1 3 I 1 - | I ! .I
coplas 0@ @I 10 0E i 101 0@ 18 0@ |11 I DA 10N N0l I U0N YOI 1oat N 08 Nou WOl TalN N I i WM 10N 19

¥ NVTX

Start & End A~

featur... featu.. featur.. featu.. featur.. featu.

4 streams hidde — + Bt
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Nsight Compute

Used to get kernel specific information

High overhead
only use on hot spots or be ready to wait. Can take over 10x longer to execute

Serializes some execution meaning can’t give full picture of parallel utilization

NCU Commands

Generate analysis example:
ncu --set full -f -o ncu_report_output_file_name python train.py

Query metrics that can be gathered:

ncu --query-metrics

Gathered specific kernel metrics example:
ncu --csv --nvtx -f --print-nvtx-rename kernel --target-processes all --fp --print-kernel-base demangled --print-units base --profile-

from-start off --clock-control base --print-summary per-nvtx --log-file profile_name_ncu_metrics.csv --metrics
sm__cycles_elapsed.sum,sm__cycles_active.sum,dram__bytes_read.sum,dram__bytes_write.sum python train.py

A A B C D E F G H I J K L M

1 |Domain |Range:PL_ Kernel Nar Block Size Grid Size Device Id Invocation Section Nz Metric Name Metric Uni Minimum  Maximum Average

2 |<default d "forward: void at::na 512 4096 0 1 Command dram__bytes_read.sum byte 12894208 12894208 12894208
0 1 Command dram__bytes_write.sum byte 43264 43264 43264

3 |<default d "forward: void at::na 512 4096

NVIDIA.
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layerl
layerl
layerl
layerl
layerl
layerl

* Allows you to insert named regions into code

NVTX Regions

Annotation Tool for Profiling Code in Python and C/C++

- Python package available (https://pypi.org/project/nvtx/): pip install nvtx

do something

nvtx.end range(rng)

* Nsight tools understand these regions
- Can generate reports for nvtx regions

StartEnd
StartEnd
StartEnd
StartEnd
StartEnd
StartEnd

rng = nvix.start_range(message="my_message”, color="blue")

* Helps you pinpoint areas that need improvement

727882
727882
727882
727882
727882
727882

727882
727882
727882
727882
727882
727882

T

10

WD W~
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817501
573215
527775
523325
303231
107456

81750.1
81887.9
175925
58147.2
101077
17909.3

41280
88448
176032
26336
100864
17520

39424
34976
175520
24928
100767
5760

144896
93920
176223
123296
101600
31392

52978.6 void cudnn::bn_fw_inf_1C11_kernel_NCHWH=float, float, (bool)1, {(int)1>(T2, T2, cudnnTensorStruct, const T1 *, cudnnTe
20902 void cutlass::Kernel<cutlass_80_tensorop_s1688gemm_256x64_16x4_nn_align4>(T1::Params)
363.5 void at::naltive::Vecto.}ized_elementwise_kernel<{int}4, at::native::BinaryFunctor<float, float, float, at::native::AddFunc
48642.6 void at::native::vectorized_elementwise_kernel<(int)4, at::native::<unnamed>::launch_clamp_scalar(at::Tensorlteratol
455.5 sm80_xmma_fprop_implicit_gemm_indexed_tf32f32_tf32f32_f32_nhwckrsc_nchw_tilesize256x64x32_stage3_warpsi:
13317.9 void cudnn::ops::nchwToNhwcKernel<float, float, float, (bool)0, (bool)1, (cudnnKernelDataType_t)2>(cudnn::ops::nchw

Nvtxkernsum csv output example for ResNet50. @nViDIA. I


https://developer.nvidia.com/blog/nvidia-tools-extension-api-nvtx-annotation-tool-for-profiling-code-in-python-and-c-c/

Profiling Tips

GPU Considerations
Query the available clocks
nvidia-smi -q -d SUPPORTED_CLOCKS -i O

Lock the clocks on the gpu
nvidia-smi -1gc <minGPUclock>, <maxGPUclock>

Release the clocks
nvidia-smi -rgc
System Considerations
Stop nonessential tasks
Warmup the system
Run a few iterations to instantiate buffers and first-time setup things

Profile only the regions of interest
For GPU use cudaProfilerStart() and cudaProfilerStop() (Profiler Users Guide (nvidia.com)) (

)
Proper synchronizations to ensure done

In torch call torch.cuda.synchronize() to ensure GPU done for benchmarking

Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023. NVIDIA.


https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/bshillingford/python-cuda-profile
https://github.com/bshillingford/python-cuda-profile

Thank you

Jason Clemons

jclemons@nvidia.com

Disclaimer: Results, numbers and performance are reported from the research perspective
For the exact performance please contact NVIDIA product managers
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