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CPU
Jack of all trades.  Master of none

• Flexible instruction stream
• Handle complex control flow programs

• Memory system for low latency
• Fast local memory close to the compute (registers)
• Caches provide locality benefits

• Lower core count/thread count

• Very good for complex control flow programs

• SIMD (Single Instruction Multiple Data)
• Same operation on multiple pieces of data in parallel
• Vector operations through vector extension units

• Viable for vector codes with limited parallelism
• Or lower memory requirements

• Typically coordinates the system
• Some level of good performance benefits attached accelerators

Image from The Berkeley Out-of-Order Machine (BOOM) — RISCV-BOOM documentation (boom-core.org)

RISC-V Based CPU

https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
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GPU
Highly Parallel

• Fully programmable

• Designed for parallel compute
• Supported with high bandwidth memory system

• Efficient when operating in converged (lock step)
• Supports divergent behavior unlike SIMD (vector) engines

Figure 1. Simplified view of the GPU architecture

Figure 3. Utilization of an 8-SM GPU when 12 thread blocks with an occupancy of 1 
block/SM at a time are launched for execution. Here, the blocks execute in 2 waves, 
the first wave utilizes 100% of the GPU, while the 2nd wave utilizes only 50%.

Figures from: https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html
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GPU
Full system

• Full system has large amount of capability

• Memory system built for high throughput
• Memory request coalescing 

• Custom units for specific common operations
• Includes tensor cores for tensor math operations
• Tensor Memory Accelerator for efficient tensor memory accesses

• Supports multiple data formats: int8, FP32, FP16, BF16, FP8

Full H100: 144 SMs

Hopper SM
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Mapping Work To The System
Tiling for GPU

• Memory changes as you get closer to compute
• Higher bandwidth, lower size

• Split problem up to fit in memory system
• Problem is typically tiled to split the problem up
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Systolic Array

• Array of ALUs or processing elements (PEs)

• Each PE typically simple
• Small local storage
• Simple set of operations

• Data flows through the array
• Each PE computes a part of the results and passes data along

• Paired with a host
• Host interacts with a controller to decide operations

• Can be efficient if the problem maps well to the system

• Has limited flexibility due to application specific nature

• Problem needs to map well to the hardware array shape and flow

• Examples:
• TPU1, Eyeriss2

Buffer PE PE PE

PE PE PE

PE PE PE

Accum Accum Accum

Buffer

Buffer

Buffer Buffer Buffer

1. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit, ISCA 2017
2. Chen el al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. ISCA 2016
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Custom Accelerators
NVDLA

• NVDLA is a custom accelerator for DL models
• Example of a more specialized hardware accelerator

• Configurable instead of programmable

• High efficiency for the networks they accelerate
• NVDLA is targeted for inference
• NVDLA works for specific data types: int8, int16, fp16

• Custom accelerators require a good software eco system
• NVIDIA provides tools such as TensorRT to generate network configs

• Commonly used in edge inference
• NVDLA available in Jetson systems such as Orin
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System On Chips
SoCs

• Contains multiple compute engines on single chip
• CPUs, GPUs, and accelerators

• Shared memory system

• Common usage on edge devices

• Data flows between components
• Application components run on most suitable engine
• Requires more complex management (better eco system)

• Examples
• Nvidia Jetson Orin
• Apple M2



Full-Stack, GPU-Based Acceleration of Deep Learning. June 2023.

Importance of Memory Accesses
General Accelerator Example

Why is 
memory movement critical ?

Efficiency/Energy

Figures are from Timeloop tutorial

http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf
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Importance of Mapping
Leverage reuse for efficiency

Figures are from Timeloop tutorial

http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf
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Importance of Good Mappings

Figures are from Timeloop tutorial

http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf
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Timeloop and Accelergy
Tools for determining efficient mappings

More information at https://github.com/Accelergy-Project/timeloop-accelergy-tutorial

Figures are from Timeloop tutorial

http://accelergy.mit.edu/ispass2020/2020_08_23_timeloop_accelergy_tutorial_part1.pdf
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Common Concepts for Performance
Performance Metrics

• Latency 
• Time to complete an operation
• Units: time before work complete

• Example
• Add operation – 1 cycles

• Divide operation – 8 cycles

• Function call/return – 10 ns 

• Energy Per Operation
• Average energy to complete an operation
• Example:

• 10 pJ per Op

• Throughput
• Rate at which a work can be completed
• Units:  work per unit time

• Example:
• Frames per second (FPS)

• Bytes per second (Bps)

• Power
• Rate at which energy is used
• Example:

• System TDP: 30 Watts (W)

• Perf per Watt
• Performance metric per Watt
• Measures efficiency
• Example:

• FLOPS/Watt
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Latency Vs Throughput
A simple example

• System delivers throughput of 30 FPS

• What is the latency of this system?
A. 1/30 seconds ~33 ms
B. 1/15 seconds ~ 66ms
C. 1 second ~ 1000 ms
D. 2 seconds ~ 2000 ms

•
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C. 1 second ~ 1000 ms
D. 2 seconds ~ 2000 ms

•
The answer is yes.

All of them could be right!
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Latency Vs Throughput
A simple example

• System delivers throughput of 30 FPS

• What is the latency of this system?
A. 1/30 seconds ~33 ms (1 frame per batch)
B. 1/15 seconds ~ 66ms ( 2 frames per batch)
C. 1 second ~ 1000 ms (30 frames per batch)
D. 2 seconds ~ 2000 ms (60 frames per batch)

•
The answer is yes.
All of them could be right!
They all produce 30 FPS!-1 frame

33.3 66.6 99.9 133.2

B

A
Throughput may not be 
enough specification!
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Common Concepts for Performance
Performance Metrics

• Compute Bandwidth
• Operations per unit time
• Example:

• 1024 Math units, 1 GHz clock, 1 Operation per clock 
• 1024 × (1 × 109 ) / 1 = 1024 GOPs Compute Bandwidth

• 1024 Math units, 1 GHz clock, 2 Operation per clock
• 1024 × (1 × 109 ) / 1 = 512 GOPs Compute Bandwidth

• Compute Bandwidth Utilization
• Fraction of peak compute bandwidth achieved
• Example:

• Peak: 1 TFLOPS

• Achieved: 400 GFLOPS

• Compute Bandwidth Utilization: 400 × 109 / 1 × 1012 = .40 
or 40%

• Memory Bandwidth
• Bytes per unit Time
• Example:

• 1 GB, in 5 seconds
• 200 MB/s

• Memory Bandwidth Utilization
• Fraction of peak memory bandwidth achieved
• Example:

• Peak: 1TB/s

• Achieved: 200 GB/s

• Memory Bandwidth Utilization: 200 × 109 / 1 × 1012 = .20 or 
20%

• Arithmetic Intensity
• Flops per byte fetched
• Correlates with data reuse
• Example:

• 32 FLOPs

• 17 Bytes fetched

• Arithmetic Intensity: 32 / 17 = 1.88 FLOPs/Byte 
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Estimating Performance
Bounding the performance

• Compute the FLOPs in the layers
• 3×3 Conv2d with bias, Input is 1×3×416×480, Output is 1×16×208×240 

• FLOPs = ((3×3) × 3 +1) ×16 × 208 × 240 * 2= 22364160 * 2 = 44,728,320

• FP32 Input tensor: 3×416×480*4 = 2,396,160

• FP32 Output tensor: 16×208×240*4 = 3,194,880

• FP32 Parameters: (3×3×3) × 16 + 16 = 448

• Tools like torchinfo give can give you this

• Use the system peak compute and memory bandwidth to estimate performance
• Assume peak compute bandwidth of 1 TOPS (1×1012 OPs)

• Best case: 44,728,320/ 1×1012 = 0.00004472832 s = 44.8 ns compute

• Assume peak memory bandwidth of 1000 GB/s
• Best case: 559104 / 1000×109 = 0.00000559104 s =5.6 ns memory transfer 

• Realistically you assume some derating factor but now at least it is bounded
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Understanding Performance

• Operations can be memory-limited and math-limited
• Math limited – High utilization of the compute units while the memory bandwidth utilization is not high

• Math limited if:  (BWmath / PeakBWmath) ~> .7 

• Memory limited – High utilization of the memory bandwidth while the compute unit utilization is not high
• Mem limited if: ( BWmem / PeakBWmem ) ~> .7

• Using Arithemtic intensity for estimating limitations 
• Math limited if:  #ops / #bytes > PeakBWmath / PeakBWmem

B – byte

b - bit
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Hints on handling issues

• Compute bandwidth limited
• Move to a different numerical format

• Some hardware supports more compute with smaller format

• Rework the algorithm to use less compute
• Due to parallelism small changes may not impact performance

• Use structured sparsity
• 2:4 structured sparsity approx. doubles the FLOPSs

• Use specialized hardware
• Tensor cores

• Memory bandwidth limited
• Move to a different numerical format

• You can move more operands in the same memory bandwidth

• Overlap memory transfers
• Restructure your data

• Some data structures make better use of the memory transfers

• Resize the problem

• Compute and Memory bandwidth limited
• Reformulate the problem
• Refactor the code

Remember: With NVIDIA GPUs, you can always write a 
custom kernel to for greater efficiency and control 
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What is TensorRT?

Figures are from TensorRT SDK | NVIDIA Developer

https://developer.nvidia.com/tensorrt
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TensorRT
What does it do?

Convert the model to int8 using common static techniques. It does not require retraining to generate the
new operands

Combine common operations to avoid overheads of launching separate kernels or taking round trips to memory

Explores various transforms that may be more efficient ways of performing the operations of a layer.  For 
example, it may transform a convolution into a Winograd convolution if that is more efficient.  It may 
change the way it tiles the problem based on the hardware it is targeting.

Release memory that may not be used after the current operation

Independent data streams can share the hardware spatially (run at the same time) on different pieces of 
the hardware. 

Optimize the time step expansion of RNNs
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TensorRT
Summary

• Tool to optimize networks

• Takes a network and generates a highly optimized version

• Can target specific hardware, including DLA
• Can use both GPU and DLA to run network 
• Can determine which is best for a given layer and set it to run there

• Uses a special runtime engine for optimized network execution

• Integrations into PyTorch and TF
• TF: tensorflow-gpu has integrations and just needs tensorRT to be installed
• PyTorch: torch-tensorrt is available.  
• Also, NVIDIA provides NGC docker images with these integrations ready to use (ngc.nvidia.com)

https://github.com/tensorflow/tensorrt
https://github.com/pytorch/TensorRT
https://catalog.ngc.nvidia.com/?filters=&orderBy=weightPopularASC&query=
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NVIDIA Profiling Tools
Suite Of Applications

• Nsight Systems (nsys)
• Provides primarily system level information

• Timing performance

• Memory Bandwidth

• Tensor core utilization

• And many more

• Nsight Compute
• Provides kernel level information

• Kernel FLOPS

• Memory Usage

• SM Occupancy

• And many more

NVIDIA Developer Tools Overview | NVIDIA 
Developer

https://developer.nvidia.com/tools-overview
https://developer.nvidia.com/tools-overview
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Nsight System

• Used to get system information during execution
• Kernel latency, timeline etc

• Can be used as a gui
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Nsight System

• nsys profile -w true -t cuda,nvtx,osrt,cudnn,cublas -s none -o report_output_name -f true -
x true --capture-range=cudaProfilerApi --capture-range-end=repeat python3 train.py

• nsys profile – runs nsight system 
• -w true: send output to std out
• -t cuda,nvtx,osrt,cudnn,cublas: trace these api calls 
• -s none: disable cpu sampling.  Could turn on if care about CPU code
• -o report_output_name: the name of the report file to make
• -f true: force the overwrite if filenames exist
• -x true: stop profiling on exit 
• --capture-range=cudaProfilerApi: how to capture.  This mode is set up for a call to start in 
code.  Could be from the beginning

• --capture-range-end=repeat: what to ends the capture range.  This says we can repeatedly turn it 
on and off with a call in the python code

• python3 train.py: command to run nsys profile on

Command Line: Generating a report
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Nsight System

• nsys stats --force-export --force-overwrite --format csv --output . --report 
cudaapisum,cudaapitrace,nvtxkernsum,nvtxsesum,gpumemsizesum,gpumemtimesum,gputrace,gpukerns
um report_output_name.nsys-rep

• nsys stats: run stats generation
• --force-export: force to read report file and not use pregenerated sql file
• --force-overwrite: force overwriting output if already exists
• --format csv: output format
• --output .: the output files
• --report 
cudaapisum,cudaapitrace,nvtxkernsum,nvtxsesum,gpumemsizesum,gpumemtimesum,gputrace,gpukernsum: 
the reports to generate

• report_output_name.nsys-rep: nsys profile result to use for generating stats

Generate Stats

Gpukernsum csv output example for ResNet50.  Top 5 kernels.
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NSYS GUI
w/NVTX Regions
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Nsight Compute
Detailed kernel info

• Used to get kernel specific information

• High overhead
• only use on hot spots or be ready to wait.  Can take over 10x longer to execute
• Serializes some execution meaning can’t give full picture of parallel utilization

• NCU Commands
• Generate analysis example:

• ncu --set full -f -o ncu_report_output_file_name python train.py

• Query metrics that can be gathered: 
• ncu --query-metrics

• Gathered specific kernel metrics example:
• ncu --csv --nvtx -f --print-nvtx-rename kernel --target-processes all --fp --print-kernel-base demangled --print-units base --profile-

from-start off --clock-control base --print-summary per-nvtx --log-file profile_name_ncu_metrics.csv --metrics 
sm__cycles_elapsed.sum,sm__cycles_active.sum,dram__bytes_read.sum,dram__bytes_write.sum python train.py 
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NVTX Regions

• Allows you to insert named regions into code

• Python package available (https://pypi.org/project/nvtx/): pip install nvtx

• Nsight tools understand these regions
• Can generate reports for nvtx regions
• Helps you pinpoint areas that need improvement 

Annotation Tool for Profiling Code in Python and C/C++

Nvtxkernsum csv output example for ResNet50.  

https://developer.nvidia.com/blog/nvidia-tools-extension-api-nvtx-annotation-tool-for-profiling-code-in-python-and-c-c/
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Profiling Tips

• GPU Considerations
• Query the available clocks

• nvidia-smi -q -d SUPPORTED_CLOCKS -i 0

• Lock the clocks on the gpu
• nvidia-smi -lgc <minGPUclock>, <maxGPUclock>

• Release the clocks
• nvidia-smi –rgc

• System Considerations
• Stop nonessential tasks
• Warmup the system 

• Run a few iterations to instantiate buffers and first-time setup things

• Profile only the regions of interest
• For GPU use cudaProfilerStart() and cudaProfilerStop() (Profiler Users Guide (nvidia.com)) (bshillingford/python-cuda-profile 

(github.com))

• Proper synchronizations to ensure done
• In torch call torch.cuda.synchronize() to ensure GPU done for benchmarking

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/bshillingford/python-cuda-profile
https://github.com/bshillingford/python-cuda-profile
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Thank you
Questions?

Jason Clemons

jclemons@nvidia.com

Disclaimer: Results, numbers and performance are reported from the research perspective 
For the exact performance please contact NVIDIA product managers
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