GBRL Module
The GBRL module includes the base class from which specific implementations of various Actor-Critic algorithms inherit. The GBRL module can also be used as a standalone class for supervised or online learning tasks.
- class gbrl.gbt.GBRL(tree_struct: Dict, output_dim: int, optimizer: Dict | List[Dict], gbrl_params: Dict = {}, verbose: int = 0, device: str = 'cpu')[source]
Bases:
object
- copy() GBRL [source]
Copy class instance
- Returns:
copy of current instance. The actual type will be the type of the subclass that calls this method.
- Return type:
GradientBoostingTrees
- export_model(filename: str, modelname: str = None) None [source]
Exports model as a C-header file
- Parameters:
filename (str) – Absolute path and name of exported filename.
- fit(X: ndarray | Tensor, targets: ndarray | Tensor, iterations: int, shuffle: bool = True, loss_type: str = 'MultiRMSE') float [source]
Fit multiple iterations (as in supervised learning)
- Parameters:
X (Union[np.ndarray, th.Tensor]) – inputs
targets (Union[np.ndarray, th.Tensor]) – targets
iterations (int) – number of boosting iterations
shuffle (bool, optional) – Shuffle dataset. Defaults to True.
loss_type (str, optional) – Loss to use (only MultiRMSE is currently implemented ). Defaults to ‘MultiRMSE’.
- Returns:
final loss over all examples.
- Return type:
float
- get_device() str | Tuple[str, str] [source]
Returns GBRL device/devices (if multiple GBRL models)
- Returns:
GBRL device per model
- Return type:
Union[str, Tuple[str, str]]
- get_num_trees() int [source]
Returns number of trees in the ensemble
- Returns:
number of trees in the ensemble
- Return type:
int
- get_params() Tuple[ndarray, ndarray] [source]
Returns predicted model parameters and their respective gradients
- Returns:
Tuple[np.ndarray, np.ndarray]
- get_schedule_learning_rates() Tuple[float, float] [source]
Gets learning rate values for optimizers according to schedule of ensemble. Constant schedule - no change in values. Linear schedule - learning rate value accordign to number of trees in the ensemble. :returns: learning rate schedule per optimizer. :rtype: Tuple[float, float]
- get_total_iterations() int [source]
- Returns:
total number of boosting iterations (sum of actor and critic if they are not shared otherwise equals get_iteration())
- Return type:
int
- classmethod load_model(load_name: str, device: str) GBRL [source]
Loads GBRL model from a file
- Parameters:
load_name (str) – full path to file name
- Returns:
GBRL instance
- plot_tree(tree_idx: int, filename: str) None [source]
Plots tree using (only works if GBRL was compiled with graphviz)
- Parameters:
tree_idx (int) – tree index to plot
filename (str) – .png filename to save
- print_tree(tree_idx: int) None [source]
Prints tree information
- Parameters:
tree_idx (int) – tree index to print
- save_model(save_path: str) None [source]
Saves model to file
- Parameters:
filename (str) – Absolute path and name of save filename.
- set_bias(bias: ndarray | Tensor)[source]
Sets GBRL bias
- Parameters:
y (Union[np.ndarray, th.Tensor]) – _description_
- set_bias_from_targets(targets: ndarray | Tensor)[source]
Sets bias as mean of targets
- Parameters:
targets (Union[np.ndarray, th.Tensor]) – Targets
- set_device(device: str)[source]
Sets GBRL device (either cpu or cuda)
- Parameters:
device (str) – choices are [‘cpu’, ‘cuda’]
- shap(features: ndarray | Tensor) ndarray | Tuple[ndarray, ndarray] [source]
- Calculates SHAP values for the entire ensemble
Implementation based on - https://github.com/yupbank/linear_tree_shap See Linear TreeShap, Yu et al, 2023, https://arxiv.org/pdf/2209.08192
- Parameters:
features (Union[np.ndarray, th.Tensor])
- Returns:
SHAP values of shap [n_samples, number of input features, number of outputs]. The output is a tuple of SHAP values per model only in the case of a separate actor-critic model.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]
- step(X: ndarray | Tensor, max_grad_norm: float = None, grad: ndarray | Tensor | None = None) None [source]
Perform a boosting step (fits a single tree on the gradients)
- Parameters:
X (Union[np.ndarray, th.Tensor]) – inputs
max_grad_norm (float, optional) – perform gradient clipping by norm. Defaults to None.
grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.
- tree_shap(tree_idx: int, features: ndarray | Tensor) ndarray | Tuple[ndarray, ndarray] [source]
- Calculates SHAP values for a single tree
Implementation based on - https://github.com/yupbank/linear_tree_shap See Linear TreeShap, Yu et al, 2023, https://arxiv.org/pdf/2209.08192
- Parameters:
tree_idx (int) – tree index
features (Union[np.ndarray, th.Tensor])
- Returns:
SHAP values of shap [n_samples, number of input features, number of outputs]. The output is a tuple of SHAP values per model only in the case of a separate actor-critic model.
- Return type:
Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]