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Abstract

We present a diffusion-based model for 3D-aware gen-
erative novel view synthesis from as few as a single input
image. Our model samples from the distribution of possible
renderings consistent with the input and, even in the presence
of ambiguity, is capable of rendering diverse and plausible
novel views. To achieve this, our method makes use of existing
2D diffusion backbones but, crucially, incorporates geom-
etry priors in the form of a 3D feature volume. This latent
feature field captures the distribution over possible scene rep-
resentations and improves our method’s ability to generate
view-consistent novel renderings. In addition to generating
novel views, our method has the ability to autoregressively
synthesize 3D-consistent sequences. We demonstrate state-of-
the-art results on synthetic renderings and room-scale scenes;
we also show compelling results for challenging, real-world
objects.

1. Introduction
In this work, we challenge ourselves to addresses multiple

open problems in novel view synthesis (NVS): to design
an NVS framework that (1) operates from as little as a
single image and is capable of (2) generating long-range of
sequences far from the input views as well as (3) handling
both individual objects and complex scenes (see Fig. 1).
While existing few-shot NVS approaches, trained on a
category of objects with a regression objective, can generate
geometrically consistent renderings, i.e., sequences whose
frames share a coherent scene structure, they are ineffective
in handling extrapolation and unbounded scenes (see Fig. 2).
Dealing with long-range extrapolation (2) requires using a
generative prior to deal with the innate ambiguity that comes
with completing portions of the scenes that were unobserved
in the input. In this work, we propose a diffusion-based
few-shot NVS framework that can generate plausible and
competitively geometrically consistent renderings, pushing

*Equal contribution.
†Work was done during an internship at NVIDIA.

Figure 1. Our 3D-aware diffusion model synthesizes realistic novel
views from as little as a single input image. These results are
generated with the ShapeNet [10], Matterport3D [9], and Common
Objects in 3D [46] datasets.

Figure 2. While regression-based models are capable of effective
view synthesis near input views (top row), they blur across ambiguity
when extrapolating. Generative approaches can continue to sample
plausible renderings far from input views (second row, third column).

the boundaries of NVS towards a solution that can operate
in a wide range of challenging real-world data.

Previous approaches to few-shot novel view synthesis
can broadly be grouped into two categories. Geometry-prior-
based methods [49, 48, 38, 34, 39, 3, 84] have drawn from
work on scene representations and neural rendering [73].
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While they achieve impressive results on interpolating near
input views, most methods are trained purely with regression
objectives and struggle in dealing with ambiguity or longer-
range extrapolations. When challenged with the task of
novel view synthesis from sparse inputs, they can only tackle
mildly ambiguous cases, i.e., cases where the conditional
distribution of novel renderings is well approximated by the
mean estimator of this distribution — obtained by minimizing
a pixel-wise L1 or L2 loss [85, 65, 84]. However, in highly
ambiguous cases, for example when parts of the scene are
occluded in all the given views, the conditional distribution
of novel renderings becomes multi-modal and the mean
estimator produces blurry novel views (see Fig. 2). Because
of these limitations, regression-based approaches are limited
to short-range view interpolation of object-centric scenes and
struggle in long range extrapolation of unconstrained scenes.

In contrast, generative approaches rely on generative pri-
ors and solve the novel view synthesis problem by generating
random plausible samples from this conditional distribution.
Existing generative models for view synthesis [52, 79, 47, 35]
autoregressively extrapolate one or a few input images with
few or no geometry priors. For this reason, most of these
methods struggle with generating geometrically consistent se-
quences — renderings are only approximately consistent be-
tween frames and lack a coherent rigid scene structure. In this
work, we present an NVS method that bridges the gap between
geometry-based and generative view synthesis approaches
for both geometrically consistent and generative rendering.

Our method leverages recent developments in diffusion
models. Specifically, conditional diffusion models [55, 53,
45, 51, 54] can be directly applied to the task of NVS. Con-
ditioned on input images, these models can sample from the
conditional distribution of output renderings. As a generative
model, they naturally handle ambiguity and lend themselves
to continued autoregressive extrapolation of plausible outputs.
However, as we show in Sec. 4 (Tab. 1), an image diffusion
framework alone struggles to synthesize 3D-consistent views.

Geometry priors remain valuable for ensuring view
consistency when operating on complex scenes, and
pixel-aligned features [56, 84, 76] have been shown to be
successful for conditioning scene representations on images.
We incorporate these ideas into the architecture of our
diffusion-based NVS model with the inclusion of a latent
3D feature field and neural feature rendering [41]. Unlike
previous view synthesis works that include neural fields, how-
ever, our latent feature field captures a distribution of scene
representations rather than the representation of a specific
scene. A rendering from this latent field is distilled into the
rendering of a particular scene realization through diffusion
sampling at inference. This novel formulation is able to both
handle ambiguity resulting from long-range extrapolation
and generate geometrically consistent sequences.

In summary, contributions of our work include:

• We present a novel view synthesis method that extends
2D diffusion models to be 3D-aware by conditioning

them on 3D neural features extracted from input
image(s).

• We demonstrate that our 3D feature-conditioned
diffusion model can generate realistic novel views given
as little as a single input image on a wide variety of
datasets, including object level, room level, and complex
real-world.

• We show that with our proposed method and sampling
strategy, our method can generate long trajectories of
realistic, multi-view consistent novel views without
suffering from the blurring of regression models or the
drift of pure generative models.

We will make the code and pre-trained models available.

2. Related work
Focusing on novel view synthesis (NVS) from as little as

a single image, our work touches on several areas at the inter-
section of 3D reconstruction, NVS, and generative models.

Geometry-based novel view synthesis. A large body of
prior works for NVS recovers the 3D structure of a scene
by estimating the input images’ camera parameters [67, 58]
and running multi-view stereo (MVS) [1, 20]. The recovered
explicit geometry proxies enable NVS but fail to synthesize
photorealistic and complete novel views especially for
occluded regions. Some recent methods [48, 49] combine 3D
geometry from an MVS pipeline with deep learning–based
NVS, but the overall quality may suffer if the MVS pipeline
fails. Other explicit geometric representations, such as depth
maps [19, 75], multi-plane images [18, 89], or voxels [64, 36]
are also used by many recent NVS approaches, as surveyed
by Tewari et al. [73].

Regression-based novel view synthesis. Many deep
learning–based approaches to NVS are supervised to predict
training views with regression. These works often employ
3D representations for scenes and differentiable neural
rendering [65, 38]. While many methods are optimized on
a per-scene basis with dense input views [38], few-shot NVS
approaches are designed to generalize across a class of 3D
scenes, which enable them to make predictions from one
or a few input images at inference. Among few-shot NVS
methods, some rely on test-time optimization [65, 27] or meta
learning [62, 72], while others lift input observations via en-
coders [75, 42, 89, 84, 74, 11, 76] and predict novel views in a
feed-forward fashion. A recent trend has some NVS methods
forgoing geometry priors for light fields [63] or transform-
ers [57, 31], but these geometry-free methods are otherwise
trained similarly to other regression-based NVS algorithms.

Generative models for novel view synthesis. A separate
line of work studies methods for long-range view extrapo-
lation. Because venturing far beyond the observed views
requires generating parts of the scene, these methods are
typically grounded in generative models. A common thread
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amongst these methods is that they often contain only weak
geometry priors, e.g., sparse feature point clouds [79, 50, 30],
or lack geometry priors altogether [52, 47]. As image-
translation-based generative models, they are capable of
conditioning on their own previous generations to autore-
gressively synthesize long camera trajectories, sometimes
infinitely [35, 33]. Because the focus is on extrapolating
at large scales, these methods ordinarily achieve only
approximate view consistency at longer ranges.

3D GANs. 3D GANs [40, 61, 7, 6, 22, 43, 82, 88, 66,
83, 87, 13, 80, 4] combine an adversarial [21] training
strategy with implicit neural scene representations to learn
generative models for 3D objects. While typically tasked
with unconditional synthesis of 3D objects, a trained 3D
GAN contains a strong prior for 3D shapes and can be
inverted for NVS of detailed scenes [7, 6]. 3D GANs have
been extensively developed to achieve compositionality [41],
higher rendering resolution [6, 22, 66], video generation [2],
and scalability to larger scenes [14]. GANs, however, are
notoriously difficult to train, and their 3D inversions from an
input image are often brittle without additional 3D priors [81]
or an accurate camera input [29]. Moreover, most 3D GANs
assume canonical camera poses and limit their optimal
operating ranges to single objects.

2D diffusion models. 2D diffusion models [24, 68, 70, 28]
have transformed image synthesis. Favorable properties such
as mode coverage and a stable training objective have enabled
them to outperform [15] previous generative models [21] on
unconditional generation. Diffusion models have also been
shown to be excellent at modeling conditional distributions of
images, where the conditioning information may be a class la-
bel [71, 15], text [45, 51, 54] or another image [25, 55, 53, 8].

Recent 3D diffusion works. Recently, DreamFusion [44]
and 3DiM [78] apply 2D image diffusion models to build
3D generative models. DreamFusion performs text-guided
3D generation by optimizing a NeRF from scratch. 3DiM
performs novel view synthesis conditioned on input images
and poses (similar to [47]) and does not employ any explicit
geometry priors; it aggregates multiple observations at
inference using a unique stochastic conditioning scheme. By
contrast, the geometry priors present in our approach enable
3D consistency with a much lighter-weight model (90M
for ours vs 471M or 1.3B for 3DiM [78]), and because our
model naturally handles multiple input views, we have the
flexibility to choose efficient sampling schemes at inference.
While code for 3DiM is unavailable, we compare to a similar
geometry-free variant in Sec. 4 (Tab. 1) and to stochastic view
conditioning in the supplement.

3. Method
Here we describe the architecture of our NVS model for

both single and multiple-view conditioning, and we explain
our training and inference methods.

Figure 3. Illustration of our framework D. The pipeline receives
as input one or more input views x and the camera parameters
associated with input and target views. We extract features from
each input view x using T and unproject them into a feature volume
W . These volumes are aggregated using a mean-pooling operation,
decoded by a small MLP f , and a feature image F is created by
projecting into the target view xtarget using volume rendering. The
U-Net denoiser U then takes in the resulting feature image F as
well as a noisy image of the target view y and noise level σ, and
produces a denoised image of the target view xtarget.

In novel view synthesis, we are given a set of input images
xinputs and camera parameters Pinputs with associated pose
and intrinsics and are tasked with making a prediction for a
query view given a set of query camera parameters.

Our goal is to sample novel views from the corresponding
conditional distribution:

p(xtarget|xinputs,Pinputs,Ptarget). (1)

3.1. 3D-aware diffusion model architecture
Diffusion models rely on a denoiser trained to predict

Ep(x|y)[x] given y, a noisy version of x with noise
standard deviation σ. An image is generated by drawing
y0 ∼ N (0,σ2

maxI) and iteratively denoising it according to
a sequence of noise levels σ0=σmax>...>σN =0.

In our work, we directly repurpose 2D diffusion models to
model the distribution in Eq. 1. The intuition is that generative
novel view synthesis is identical to any other conditional
image generation task — all we need to do is condition
a 2D image diffusion model on the input image and the
relative camera pose. However, while there are many ways of
applying this conditioning, some may be more effective than
others (see Tab. 1 and ablation studies of different options in
Sec. 4.4). By incorporating geometry priors in the form of a
3D feature field and neural rendering, we give our architecture
a strong inductive bias towards geometrical consistency.

Fig. 3 summarizes the design of our conditional-desnoiser-
based pipeline D that takes as inputs a noisy target view y,
conditioning information (xinputs,Pinputs,Ptarget) and a noise
level σ. Our strategy builds upon pixel-aligned implicit func-
tions [56, 84] and neural rendering. Following Fig. 3, given
a single input image x taken from an input view camera P,
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we use an image-to-image translation network T to predict
a feature image with c×d channels and reshape it into a fea-
ture volume W that spans the source camera frustum. d then
corresponds to the depth dimension of the volume and c to
the number of channels in each cell of the volume (typically,
c=16 and d=64). Given a query camera Ptarget, we cast rays
in 3D space. Continuing on Fig. 3, for any point r along a ray,
we sample the volume W with trilinear interpolation and de-
code the obtained feature w=W (r) with a small multi-layer
perceptron (MLP)f to obtain a density τ and a feature vectorc

(τ,c)=f(w). (2)

By projecting this feature field into the target view using vol-
ume rendering [37, 38], we obtain a feature image F in Fig. 3:

F (x,P,Ptarget)=RENDER(f ◦T (x),P,Ptarget). (3)

In practice, we employ the image segmentation archi-
tecture DeepLabV3+ [12, 26] for T , and implement f as a
two-layer ReLU MLP with 64 channels. We perform volume
rendering over features in the same way as NeRF [38]. We
use input/output image resolution 1282 in all experiments.

The feature image F is concatenated to the noisy
image y and passed as input to a denoiser network U to
produce the final target view xtarget (see Fig. 3). We use
DDPM++ [71, 28] for U , where

D(y ;xinputs,Pinputs,Ptarget,σ)=U(y,F ;σ) (4)

Fig. 3 and Eq. 4 summarize the design of D. The total
number of trainable parameters in D is 90M.

3.2. Incorporating multiple views
The previous section describes our approach to condition-

ing on a single input view. However, additional information
in the form of multiple input views reduces uncertainty and
enables our model to sample renderings from a narrower
distribution. When multiple conditioning views are available,
we process each input image independently into a separate
feature volume.

Eq. 2 can be generalized to n conditioning views by
averaging the features wj =Wj(r) obtained for each input
image xj , as in [84]:

(τ,c)=f

 1

n

n∑
j=1

wj

. (5)

To leverage this strategy during inference, we train our
model by conditioning with multiple (variable) input images.
Conditioning using multiple input images helps to ensure
smooth, loop-consistent video synthesis. While conditioning
on only the previous frame is sufficient for view consistency
in a small view change, it does not guarantee loop closure.
In practice, we find that conditioning on a subset of previous
views helps to enforce correct loop closure while maintaining
reasonable view to view consistency.

3.3. Training
At each iteration during training, we sample a batch of

target images, input images, and their associated camera
poses, where the targets and inputs are constrained to be from
the same scene. Our model is trained end-to-end from scratch
to minimize the following objective

L :=E(xtarget,xinputs,Ptarget,Pinputs)∼pdataEε∼N (0,σ2I) (6)[
∥D(xtarget+ε ;xinputs,Pinputs,Ptarget,σ)−xtarget∥22

]
,

where σ is sampled during training according to the strategy
proposed by EDM [28]. The number of conditioning views
for a query is drawn uniformly from {1,2,3} at every iteration.
During training, we apply non-leaking augmentation [28] to
U and augment input images with small amounts of random
noise. Please see the supplement for hyperparameters and
additional training details.

3.4. Generating novel views at inference
Sampling a novel view with our method is identical to sam-

pling an image with a conditional diffusion model. The spe-
cific update rule for the denoised image is determined by the
choice of sampler. In our experiments, we use a deterministic
2nd order sampling strategy [28], with 25 or fewer denoising
steps. Other sampling strategies [71, 69] can be dropped in
if other properties (e.g., stochastic sampling) are desired.

In order to improve efficiency at inference, we decouple
Γ and U . Rather than running both Γ and U at every step
during sampling, we first render the feature image F as
a preprocessing step and reuse it for each iteration of the
sampling loop – whileU must run every step during inference,
Γ is run only once.
Alternative “one-step” inference. An alternative variant
of our model to generating an image with iterative denoising
is to produce the image with a single step of denoising. Intu-
itively, the one-step prediction of a model trained with Eq. 6
should behave identically to the prediction of a model trained
to minimize pixel-wise MSE. Thus, this alternative inference
mode is representative of regression-based methods. A model
trained as described is capable of both generative sampling
and deterministic one-step inference—no architecture or
training modifications are required.

3.5. Autoregressive generation
In order to generate consistent sequences, we take

an autoregressive approach to synthesizing sequential
frames. Instead of independently generating each frame
conditioned only on the input images, which would lead to
large deviations between frames, we generate each frame
conditioned on the inputs as well as a subset of previously
generated frames. While there are many possible ways of
selecting conditioning views, a reasonable setting that we use
in our experiments is to condition on the input image(s), the
most recently generated image, and five additional images
drawn at random from the set of previously generated frames.
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Figure 4. Qualitative comparison on ShapeNet [10] with one input
view. Unlike regression-based approaches, our method produces
sharp realizations. With one-step inference, our approach behaves
like a mean estimator of the novel view, similarly to PixelNeRF.

We found this default conditioning setting to be a good
starting point that balances short range, frame-to-frame
consistency, long-range consistency across the scene,
and compute cost, but other variants may be preferred to
emphasize specific qualities.

While one might expect errors and artifacts to accumulate
throughout long autoregressive sequences, in practice we find
that our model effectively suppresses such errors, making
it suitable for extended sequence generation. Please see the
supplement for alternative autoregressive schemes.

4. Experiments

We evaluate the performance of our generative NVS
method on ShapeNet [10] “cars” and Matterport3D [9], two
starkly different datasets. ShapeNet is representative of
synthetic, object-centric datasets that have long been domi-
nated by regression-based approaches to NVS (e.g., [84, 63]).
Meanwhile, long-range NVS on Matterport3D is prototypical
of unbounded scene exploration, where generative models
with weak geometry priors [79, 52, 47] have seen more
success. Finally, we stress-test our method on the challenging
Common Objects in 3D (CO3D) [46], an unconstrained
real-world dataset — to our knowledge, our work is the first
to attempt single-shot NVS on this dataset while including
its complex backgrounds. Our method improves upon the
state-of-the-art for all tasks. For additional results, please
refer to the videos contained in the supplement.

Baselines and implementation details. For ShapeNet
and CO3D, we compare our method to PixelNeRF [84], a
state-of-the-art NeRF-based method for NVS, and View-
Former [31], a transformer-based, geometry-free approach
to NVS. For ShapeNet, we additionally provide a comparison
with EG3D-PTI [6], which is based on a state-of-the-art 3D
GAN for object-scale scenes, and a numerical comparison
with 3DiM [78], a recent geometry-free diffusion method for
NVS. For Matterport3D, we compare our method against the
state-of-the-art on this dataset: Look Outside The Room [47],
a transformer-based, geometry-free NVS method designed
for room-scale scenes, and to additional SOTA methods,
including SynSin [79] and GeoGPT [52] in Tab. 2.

FID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM ↑
PixelNeRF [84] 65.83 0.146 0.203 23.2 0.90
ViewFormer [31] 20.82 0.146 0.161 19.0 0.83
EG3D-PTI [6] 27.23 0.150 0.310 19.0 0.85
3DiM (autoregressive) [78]† 8.99 21.01 0.57

O
ur

s

Explicit 8.09 0.129 0.158 19.1 0.86
Geom.-Free 16.68 0.342 0.329 13.1 0.74
One-Step 42.07 0.150 0.178 23.2 0.91
Full (autoregressive) 11.08 0.120 0.146 20.6 0.89
Full 6.47 0.104 0.145 20.7 0.89

Table 1. Quantitative comparison of single-view novel view
synthesis on ShapeNet cars [10, 65]. † As reported by [78].

Figure 5. Generating new views from more (bottom) or less
(top) ambiguous conditioning information. PixelNeRF [84] is
constrained to output deterministic novel views and renders an
average of all plausible renderings that are consistent with the
input view. In comparison, our method samples the conditional
distribution, leading to sharp but different realizations. In the last
column, we show the per-pixel standard deviation of the novel
view and show that unseen areas are more ambiguous, i.e., vary
more from one sample to the other. Pixel-wise standard deviation is
computed over 50 samples. Dark pixels indicate higher ambiguity.

Metrics. We evaluate the task of novel view synthesis
along three axes: ability to (1) recreate the image quality
and diversity of the ground truth dataset, (2) generate novel
views consistent with the ground truth, and (3) generate
sequences that are geometrically consistent. For (1), we
use distribution-comparison metrics, FID [23] and KID [5],
which are commonly used to evaluate generative models
for image synthesis. For (2), we use perceptual metrics
LPIPS [86] and DISTS [17], which measure structural and
texture similarity between the synthesized novel view and
ground-truth novel view. For completeness, we include
PSNR and SSIM, although the drawbacks of these metrics
are well-studied: these raw pixel metrics have been shown
to be poor evaluators of generative models as they favor
conservative, blurry estimates that lack detail [55, 53].
For (3), we provide COLMAP [59, 60] reconstructions of
generated video sequences, a standard evaluation for 3D
consistency in 3D GANs [61, 7, 6]. Dense, well-defined
point clouds are indicative of geometrically consistent frames.
We calculate Chamfer distances between reconstructions
of the ground-truth images and reconstructions of generated
sequences to quantitatively evaluate geometrical consistency.

4.1. ShapeNet

We standardize our training and evaluation on the single-
class, single-view NVS benchmark described in [84, 65, 31].
The ShapeNet training set contains 2,458 cars, each with 50
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Figure 6. COLMAP reconstructions from video sequences
produced by our method are dense, well-defined, and highly similar
to reconstructions of the ground-truth images, demonstrating a high
degree of geometric consistency, as measured by Chamfer distance.
The three rows show results on ShapeNet, Matterport3D, and CO3D,
respectively.

renderings randomly distributed on the surface of a sphere.
For evaluation, we use the provided test set with 704 cars,
each with 250 rendered images and poses on an Archimedean
spiral. All evaluations are conducted with a single input
image. For our model, we evaluate both independently
generated frames and frames generated with autoregressive
conditioning. In addition to our model and the baselines, we
provide additional comparisons to several ablative variants of
our approach, which are discussed in more detail in Sec. 4.4.

Fig. 4 provides a qualitative comparison against baselines
for single-view novel view synthesis on ShapeNet. In contrast
to PixelNeRF, which predicts a blurry mean of the conditional
distribution, our method (Ours Full) generates sharp realiza-
tions. While ViewFormer also produces sharp images due to
training with a perceptual loss, its renderings fail to transfer
some small details, such as headlight shape, from the input.

In Tab. 1, we report the quality of novel renderings
produced by our method and baselines, as measured by
FID [23], LPIPS [86], DISTS [16], PSNR, and SSIM [77]. As
a generative model, our method creates sharp, diverse outputs,
which closely match the image distribution; it thus scores
more favorably in FID than regression baselines [84, 31],
which tend to produce less finely detailed renderings. Our
method outperforms baselines in LPIPS and DISTS, which
indicates that our method produces novel views that achieve
greater structural and textural similarity to the ground truth
novel views. We would not expect a generative model to
outperform a regression model in PSNR and SSIM, and
indeed, renderings from PixelNeRF achieve higher scores
in these pixel-wise metrics than realizations from our model.
However, we note that the one-step denoised prediction of our
model (described in Sec. 3.4) is able to match PixelNeRF’s
state-of-the-art PSNR and SSIM. While our method with
autoregressive conditioning does not surpass 3DiM [78],

Figure 7. Qualitative comparison on Matterport3D [9] for NVS.
Given a single input image (1st col.), we autoregressively run
our method and LOTR [47] for 10 frames to synthesize novel
view images (2nd and 3rd columns). Ground truth images for the
corresponding query camera poses are shown in the fourth column.
Best viewed zoomed-in.

it achieves competetive scores with a lighter weight model
(90M vs 471M params) and fewer diffusion steps (25 vs 512).

In Fig. 5, we demonstrate that for a given observation, our
model is capable of producing multiple plausible realizations.
When conditioning information is reliable, such as when the
query view is close to the input view, ambiguity is low and
samples are drawn from a narrow conditional distribution.
For more ambiguous inputs, such as when the model is
tasked with recreating regions that were occluded in the input
image, our model produces plausible realizations with more
variation. In contrast, regression-based methods such as Pix-
elNeRF deterministically predict the mean of the conditional
distribution and are therefore unable to create high quality
realizations when the target view is far from conditioning
information and the conditional distribution is large.

Fig. 6 shows that our method can also achieve high
geometrical consistency when combined with autoregressive
generation as validated by dense point cloud reconstruction
and the Chamfer distance to the ground truth.

4.2. Matterport3D

Beyond ShapeNet, we seek to show the effectiveness of
our method on the Matterport3D (MP3D) dataset that features
building-scale, real-world scans. We use the provided code of
[47] to sample trajectories of embodied agents and generate
6,000 videos for training and 200 videos for testing, using the
provided 61/18 training and test splits. We train our model by
sampling random pairs of input and target images from the
same video sequence, where 50% of input views are drawn
from within ten frames of the target view and the rest are sam-
pled randomly from the video sequence. The rest of the train-
ing procedure is equivalent to the one we use with ShapeNet.
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KID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM↑
LOTR [47] (10 f.) 0.050 0.33 0.27 16.57 0.49
Ours (10 f.) 0.002 0.14 0.14 20.80 0.71
SynSin-6X∗ [79] 0.072 0.48 0.34 14.89 0.41
GeoGPT∗ [52] 0.039 0.33 0.27 16.47 0.49
LOTR [47] 0.027 0.25 0.22 18.00 0.55
Ours 0.002 0.09 0.11 22.79 0.79

Table 2. Quantitative comparison of single-view novel view
synthesis on Matterport3D [9]. Here, we use KID since it provides
an unbiased estimate when the number of images is small. “10 f.”
indicates novel view synthesis for 10 frames from the input image
(used 5 frames for the bottom rows). *For SynSin and GeoGPT, we
obtained the rendered images from the authors of LOTR.

Figure 8. Regression-based models, such as the one-step variant
of our approach, struggle to model ambiguity and therefore fail to
create plausible renderings far from the input. Generative sampling
enables plausible synthesis in ambiguity. When combined with
autoregressive generation, we are able to explore areas that were
completely occluded in the input.

Figure 9. Loop closure test on Matterport3D [9]. We run
our method and LOTR [47] on a small cyclic rotation angle
trajectory (0◦→15◦→45◦→15◦). Without 3D representations,
transformer-based methods, such as LOTR, rely on interpreting raw
camera parameters, resulting in weak spatial awareness. Our 3D
feature representation more effectively aggregates past observations
and provides better loop closure. Best viewed zoomed-in.

For evaluation, we randomly select an input frame in the
test video set (one input frame for each test video), and run ten
steps of autoregressive synthesis, following the test camera
trajectory; we calculate metrics using all ten synthesized
frames. Beyond 10 frames, input and the target frusta rarely
overlap, making comparisons against ground truth frames

less meaningful. We compare against Look Outside the
Room (LOTR) [47], the current state-of-the-art (SOTA) for
single-view NVS on Matterport3D that outperforms prior
NVS works (i.e., [79, 50, 52, 32]). We additionally compare
against SynSin [79] and GeoGPT [52], using the 5-frame
renderings provided by the authors of LOTR. Note that, since
the trajectories of embodied agents are randomly sampled,
the trajectories used for these two baselines are different
from those used for our method and LOTR. This comparison
measures performance on 200 random trajectories, which is
statistically meaningful and the results align with the trends
reported in LOTR. For all baselines, we downsample the
outputs to our output resolution, i.e., 1282, and compute the
aforementioned metrics against the ground truth images. To
measure the realism of the outputs, we choose KID [5], as
it is known to be less biased than FID when the number of
test images is small (we use 2000 images).

The results, summarized in Tab. 2, show that our approach
generates novel view predictions that outperform baselines
in terms of quality and consistency with the input view. Fig. 7
supports the trends observed in the metrics—our NVS is
noticeably more accurate and realistic than the current SOTA.

In Fig. 9, we compare against LOTR on a cyclic trajectory.
Our method produces better loop closure, indicating higher
geometric consistency and showing the effectiveness of
incorporating 3D priors. Fig. 6 additionally validates the
consistency of our results with superior reconstructed point
clouds and Chamfer distances.

4.3. Common Objects in 3D (CO3D)

We challenge our method with real-world scenes from the
Common Objects in 3D (CO3D) [46] dataset with complete
backgrounds. To our knowledge, no prior method has at-
tempted single-shot NVS on CO3D without object masks. We
train our method on the hydrant category of the CO3D dataset,
which contains 726 RGB videos of real-world fire hydrants.
Most videos contain a walkaround trajectory looking in at
the hydrant spanning between 60 and 360 degrees, and most
videos consist of about 200 frames. We use a 95:5 train/test
split to train our model. CO3D is a highly unconstrained
and extraordinarily difficult benchmark: scene scale, camera
intrinsics, complex backgrounds, and lighting conditions are
highly variable between (and sometimes within) scenes.

Fig. 10 compares predictions from our method against
baselines on CO3D. Our method produces plausible and
sharp foregrounds and backgrounds that do not deteriorate in
quality with increasing distance from the source pose. While
we include a qualitative comparison against ViewFormer
for reference, we exclude it from numerical comparisons
because of its reliance on object masks. Fig. 6 demonstrates
the degree of geometric consistency that is attainable by
our approach. Tab. 3 additionally provides a quantitative
comparison against PixelNeRF. On complex scenes rife with
ambiguity, the generative nature of our approach enables
synthesis of plausible realizations.
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Figure 10. While PixelNeRF produces severe artifacts when the
rendering view is far away from the input and ViewFormer requires
masks for training on this dataset, our method generates compelling
sequences from single-views on challenging, real-world objects of
the CO3D dataset [46].

KID↓ LPIPS↓ DISTS↓ PSNR↑ SSIM↑
PixelNeRF [84] 0.210 0.705 0.487 16.26 0.271

O
ur

s One-Step 0.106 0.641 0.492 16.78 0.331
Full 0.012 0.369 0.446 15.48 0.266

Table 3. Quantitative comparison of single-view novel view
synthesis on CO3D [46].

4.4. Ablation Studies

Choice of intermediate representations. Tab. 1 (bottom)
compares several choices of intermediate representations
within our method. While we have described a specific
approach to the task of generative novel view synthesis using
diffusion, there is ample freedom to choose how D interprets
information from input views. In fact, the simplest approach
forgoes any geometry priors and instead directly conditions
the model on an input view by concatenation. In our exper-
iments, this geometry-free approach struggled compared to
variants that incorporated geometry priors. However, greater
model capacity and effective use of cross-attention [78] may
be key to making this approach work. We additionally com-
pare against an “Explicit” intermediate representation similar
to our described approach but without the MLP decoder;
while slightly faster, this representation generally produced
worse results. We compare to the one-step inference mode
of our method on ShapeNet in Fig. 4 and Tab. 1, on MP3D
in Fig. 8, and on CO3D in Tab. 3. Like regression-based
methods, it obtains excellent PSNR and SSIM scores but
lacks the ability to generate plausible results far from the
input. On Matterport3D, Fig. 8 illustrates the motivation
of using a generative prior for long-range synthesis. While
the quality of regression-based predictions rapidly degrades
with increasing ambiguity, a generative model can create
a plausible rendering even in regions with little or no
conditioning information, such as behind an occlusion.

Effect of autoregressive generation. Although autore-
gressive conditioning slightly trades off image quality
(Tab. 1), Fig. 11 demonstrates the necessity of autoregressive
conditioning for generating geometrically consistent
multi-view images. Without autoregressive conditioning,
independently sampled frames are each plausible, but lack
coherence—when conditioning information is ambiguous,
e.g., when the model is predicting novel views far from the

Figure 11. Without autoregressive conditioning (top), our method
generates plausible, albeit geometrically incoherent, novel views
conditioned on the input image. With autoregressive conditioning
(bottom), our method generates plausible sequences that achieve
greater geometric consistency between frames.

input view, it samples from a wide conditional distribution
and accordingly, subsequent frames exhibit significant
variance. Autoregressive conditioning effectively conditions
the network not only on the source image, but also on
previously generated frames that closely overlap with the
current view, helping narrow this conditional distribution.

Additional studies. Additional ablations, including
experiments that evaluate out-of-distribution extrapolation,
classifier-free guidance, effect of number of input views,
stochastic conditioning, and effect of distance to input views,
can be found in the supplement.

5. Discussion
Conclusion. We proposed a generative novel view syn-
thesis approach from a single image using geometry-based
priors and diffusion models. Our hybrid method combines
the benefit of explicit 3D representations with the generative
power of diffusion models for generating realistic and
3D-aware novel views, demonstrating the state-of-the-art
performance in both object-scale and room-scale scenes. We
also demonstrate the compelling results on a challenging
real-world dataset of CO3D with background — a challenge
never attempted. While our results are not perfect, we believe
we presented a significant step towards a practical NVS
solution that can operate on a wide range of real-world data.

Limitations and future work. While our method effec-
tively combines explicit geometry priors with 2D diffusion
models, the output resolution is currently limited to 1282 and
the diffusion-based sampling is not fast enough for interactive
visualization. Since our model can leverage existing 2D
diffusion architectures for U , it can directly benefit from
future advances in the underlying 2D diffusion models. While
our method achieves reasonable geometrical consistency, it
can still exhibit minor inconsistencies and drift in challenging
real-world datasets, which should be addressed by future
work. While our method can operate for novel view synthesis
from a single view during inference, training the method
requires multi-view supervision with accurate camera poses.
In this work, we implemented our method using a 3D

8



feature volume representation. Possible future work includes
investigating other types of intermediate 3D representations.

Ethical considerations. Diffusion models could be
extended to generate DeepFakes. These pose a societal threat,
and we do not condone using our work to generate fake
images or videos with the intent of spreading misinformation.
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Generative Novel View Synthesis with 3D-Aware Diffusion Models
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In this supplement, we first provide additional ex-
periments (Sec. A1). We follow with details of our
implementation (Sec. A2), including further descrip-
tions of the model architecture and training process,
as well as hyperparameters. We then discuss experi-
mental details (Sec. A3). Lastly, we consider artifacts
and limitations (Sec. A4) that may be targets for fu-
ture work. We encourage readers to view the accom-
panying supplemental videos, which contain additional
visual results.

A1. Additional experiments & ablations

Figure A1: New views generated from out-of-
distribution poses. Extreme zooms and large trans-
lations may lead to unrealistic views.

A1.1. Extrapolation to unseen camera poses.

In the ShapeNet dataset, cameras are located on a
sphere, point towards the centers of the objects and
have the same “up” direction during training. We in-
vestigate the results of our method when querying out-

∗Equal contribution.
†Work was done during an internship at NVIDIA.

of-distribution poses at test time in Fig. A1. From
a fixed pose, we generate a zoom, a one-dimensional
translation of the camera, and a camera roll. Although
novel views deteriorate with large deviations from the
training pose distribution, the 3D prior present in our
method can reasonably tolerate small extrapolations.

A1.2. Percentile results based on LPIPS

Fig. A2 shows our synthesized results on ShapeNet
ordered by the percentile of the LPIPS [27] score, with
examples that scored best according to the metric at
the top and examples that scored worst at the bottom.
We compute predictions for the same input and output
views across the entire test set. To reduce the effects of
randomness, we evaluate 9 realizations for each input,
and use only the median image/score when ordering
our results. Our method produces consistently sharp
outputs (even at the 10th percentile) and maintains
overall textures and shapes from the input image.

A1.3. Handling multiple input images

Fig. A3 shows our generated novel views when more
than one image is given as the input conditioning infor-
mation. When only 1 view is given from the back side
of the car, the model has the freedom to choose multiple
plausible completions for the unseen front side of the
car, leading to a high standard deviation (high uncer-
tainty). Adding 2 or 3 views reduces uncertainty (low
standard deviation), and the model generates a novel
view that is compatible with multiple input views.

A1.4. Effect of distance to input view

As Fig. A4 demonstrates, nearby views provide more
valuable information than distant views, thus reduc-
ing variance in the output rendering. Consequently,
by conditioning autoregressively on nearby views, we
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Figure A2: Our synthesized novel views sorted by the
percentile of the LPIPS [27] score, with results that
scored best according to LPIPS at the top.

narrow the conditional distribution of possible out-
puts, improving geometric consistency compared to
non-autoregressive conditioning.

A1.5. Classifier-free guidance

Recently, [7] suggested classifier-free diffusion guid-
ance technique to effectively trade off diversity and
sample quality. At training, we implement classifier-
free guidance by dropping out the feature image with
10% probability; in its place, we replace this condi-
tioning image with a sample of Gaussian noise. At
inference, we can linearly interpolate between uncon-
ditional and unconditional predictions of the denoised
image in order to boost or decrease the effect of the
conditioning information.

Fig. ?? shows the effect of classifier-free guidance [7]
(CFG) when making predictions in isolation. In gen-
eral, positive classifier-free guidance increases the ef-

Figure A3: Effect of varying the number of input views.
Increasing the number of input views reduces uncer-
tainty, decreasing the pixel-wise standard deviation in
novel renderings. Dark pixels in the third row rep-
resent higher standard deviation and indicate greater
variation in the realizations.

Figure A4: Average pixel variance of generated views
vs. the distance between the query camera and the
input camera. Input views close to the camera are
valuable—the model can directly observe many of the
details it must transfer to the output rendering. Input
views distant to the camera are more ambiguous—the
model is tasked with generating large parts of the ren-
dering from scratch. As the conditioning information
gets increasingly ambiguous, novel views get increas-
ingly diverse. Pixel variance is calculated across 50
renderings per pose. Red bars indicate the empirical
standard deviation of the moving average.

fect of the conditioning information and improves sam-
ple quality. With guidance = 0, our model produces
greater variation of generated views (note the different
realizations of the passenger-side door). However, we
would consider some of these realizations to be unlikely
given the input. Increased CFG strength narrows the
distribution of possible outputs, and while we would
consider such a set of realizations to be less diverse,
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Figure A5: Independent (single-frame input) NVS with
various classifier-free guidance (CFG) strengths. For
each level of CFG, we show three realizations. With
guidance = 0, we sample a “diverse” set of novel views,
each plausible, but with variations (e.g. doors). Higher
guidance strength reduces diversity but improves sam-
ple quality. Excessively high guidance begins to intro-
duce saturation and visual artifacts. Negative guid-
ance upweights the unconditional contribution; with
guidance = −1, generation is unconditional.

Figure A6: Autoregressive sequence generation with
varying CFG strength. With low guidance, we can
generate extended autoregressive sequences with little
deterioration over time. Higher guidance tends to carry
over errors from previous frames, which gradually de-
grades the quality of subsequent generations.

each one is of high fidelity. Excessively high guidance
strength begins to introduce artifacts and color satura-
tion. Negative guidance upweights unconditional pre-
diction; guidance = −1 produces unconditional sam-
ples without influence from the input image. In gen-
eral, when making independent novel view predictions,
we find moderate levels of CFG to be beneficial. How-
ever, as described in Sec. A1.6, CFG has an adverse

effect on the quality of autoregressively generated se-
quences. As a default, we refrain from using CFG in
our experiments.

A1.6. Extended autoregressive generation

Fig. A6 shows autoregressively generated sequences
made with varying levels of classifier-free guidance.
When making long autoregressive sequences, the abil-
ity to suppress errors and return to the image man-
ifold is an important attribute. Unchecked, gradual
accumulation of errors could lead to progressive dete-
rioration in image quality. Intuitively, unconditional
samples do not suffer from error buildup, since uncon-
ditional (CFG = −1) samples make use of no informa-
tion from previous frames. On the other end of the
spectrum, highly conditioned (CFG >> 0) samples
should be more likely to suffer from error accumula-
tion because they emphasize information from previ-
ous frames. A happy medium between these two ex-
tremes allows the model to use information from pre-
vious frames while preventing undesired error accumu-
lation. Empirically, we find that while small positive
guidance can reduce frame-to-frame flicker, it enhances
the model’s tendency to carry over visual errors from
previous frames. We observe saturation buildup and
artifact accumulation to be significant roadblocks to
using CFG when synthesizing long video sequences.
For these reasons, we default to using CFG = 0, which
we found to enable autoregressive generation of long
sequences without significant error accumulation. A
solution that enables higher CFG weights for autore-
gressive generation may make a valuable contribution
in the future.

A1.7. Alternative autoregressive conditioning
schemes

Baseline strategy When generating a sequence au-
toregressively, there are many possible strategies, each
with a set of tradeoffs. To produce the visual results
presented in our work, we used the following baseline
strategy, with minor variations for different datasets.
As described in the main paper, our baseline strategy
is to condition our model on the input image(s), the
most recently generated rendering, and five previously
generated images, selected at random.

For Matterport3D, when generating long sequences,
we select the five previously generated frames from a
set of only the 20 most recently generated frames; we
additionally condition on every 15th previously gener-
ated frame.

For CO3D, we use the two-pass conditioning method
discussed below to improve temporal consistency.
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Figure A7: Qualitative comparison for single-view novel view synthesis on CO3D [15] Hydrants.

Figure A8: Additional qualitative comparisons against baselines on ShapeNet [2].
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Alternative strategies and tradeoffs As de-
scribed in the main paper, our baseline autoregressive
strategy can induce noticeable flickering. One way to
reduce flickering is to condition on only the previous
frame. Doing so almost completely eliminates frame-
to-frame flicker. However, this strategy sacrifices long-
term consistency and does little to prevent drift; new
renderings might not be consistent with frames ren-
dered at the start of the sequence. By contrast, to pro-
mote long-term consistency, one could avoid condition-
ing on previously-generated frames at all and instead
condition on only the input image(s). Because drift
is the result of error accumulation from conditioning
on previous generations, this strategy eliminates po-
tential for drift. However, it suffers from short-term
inconsistency (i.e. frame-to-frame flicker). We found
our baseline strategy, which conditions on the inputs,
the most recent rendering, and several previous ren-
derings, to be a good compromise between long-term
and short-term consistency. The number of previously
generated images we condition upon affects the behav-
ior. Because we equally weight the contribution of all
images we condition upon, increasing the number of
previous renderings (which are sampled uniformly from
the generated sequence) reduces the relative contribu-
tion of the most recent rendering. Increasing the size of
this “buffer” of previously-generated conditioning im-
ages thus improves long-term consistency at the cost of
short-term consistency; reducing the size of the buffer
has the opposite effect.

One way to suppress flickering is to generate frames
in two passes, where in the second pass, we condi-
tion on the nearby frames from the first pass in a
sliding window fashion. Empirically, conditioning on
only the nearest 4 frames during the second pass re-
sults in videos with reduced flicker, at the expensive of
higher inference computation. However, unless other-
wise noted, we render all videos shown with our base-
line autoregressive strategy, i.e. without these alterna-
tive methods.

A1.8. Stochastic Conditioning

To demonstrate the effectiveness of our autoregres-
sive synthesis method, which aggregates conditioning
feature volumes from autoregressively selected gen-
erated images, we compare to an adaptation of the
stochastic conditioning method proposed in 3DiM [24].
We adapt the stochastic conditioning method to our ar-
chitecture by replacing the feature volume aggregation
from autoregressively selected generated images with
a single feature volume generated from an image ran-
domly sampled from all previously generated images.
As done in 3DiM, the number of diffusion denoising

Figure A9: Our default autoregressive conditioning
strategy, which aggregates information from multiple
views within a feature volume, typically performs at
least on par with stochastic view conditioning [24] in
geometric consistency, but requires many fewer steps
of diffusion to remain effective. Here, we compare
COLMAP reconstructions of a sequenced produced by
feature aggregation, using 25 steps of denoising, against
a sequence produced by stochastic conditioning, using
256 steps of denoising.

steps is increased significantly and the randomly sam-
pled image is varied at each individual step of denois-
ing. Each generated final image is then added to the set
of all previous images and can be used as conditioning
in subsequent view generations. This alternative form
of conditioning is also able to provide the model with
information from many generated views, but they are
processed independently with each step of denoising,
rather than together after a feature volume aggrega-
tion.

In Fig. A9, we show 3D reconstruction results from
sequences of images generated by our autoregressive
synthesis method and with our adaptation of stochas-
tic conditioning [24]. Here, we find that our autore-
gressive synthesis method performs slightly better than
stochastic conditioning in terms of 3D consistency of
generated frames as seen by the COLMAP 3D recon-
struction and corresponding Chamfer distance. Addi-
tionally, we are able to generate novel views signifi-
cantly faster – in practice, stochastic conditioning re-
quires 256 denoising steps to generate each novel view
while our method only requires 25, leading to a 10x
improvement in speed.

A1.9. Additional Common Objects in 3D results

We provide additional results for single-view novel
view synthesis (NVS) with real-world objects for CO3D
Hydrants in Fig. A7. We compare against View-
Former [11], which has demonstrated success in few-
shot NVS on CO3D, and PixelNeRF [26]. However, we
note that ViewFormer is not a 1:1 comparison for two
reasons: 1. ViewFormer operates with object masks,
whereas our method operates with backgrounds. 2.
ViewFormer train/test splits did not align with other
methods. For this figure, and for comparison videos,
we selected objects that were contained in our test split
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but were part of ViewFormer’s train split. Despite
these disadvantages, our method demonstrates a com-
pelling ability to plausibly complete complex scenes.

A1.10. Additional ShapeNet results

Fig. A8 provides additional visual comparisons on
the ShapeNet [2] dataset against baselines. In general,
our method renders images with sharper details and
higher perceived quality than PixelNeRF, while better
transferring details from the input image than View-
Former and EG3D. In this figure, renderings from our
method are selected from autoregressively-generated
sequences.

A2. Implementation details

We implemented our 3D-aware diffusion models us-
ing the official source code of EDM [9], which is avail-
able at https://github.com/NVlabs/edm. Most of
our training setup and hyperparameters follow [9]; the
exceptions are detailed here.

Feature volume encoder, T . Our encoder back-
bone is based on DeepLabV3+ [3]. We use a Pytorch
reimplementation [8] available at https://github.

com/qubvel/segmentation_models.pytorch, and
ResNet34 [6] as the encoder backbone. We found
unmodified DeepLabV3+, to struggle because the
output branch contains several unlearned, bilinear
upsampling layers; this resolution bottleneck makes it
difficult to effectively reconstruct fine details from the
input. We replace these unlearned upsampling layers
with learnable convolutional layers and skip connec-
tions from previous layers. We disable batchnorm and
dropout throughout the feature volume encoder. The
feature volume encoder expects as input a 3×128×128
image; it produces a (16 × 64) × 128 × 128 feature
image, which we reshape into a 16 × 64 × 128 × 128
volume.

Multiview aggregation. We aggregate information
from multiple input views by predicting a feature vol-
ume Wi for each input image independently, project-
ing the query point into each feature volume, sampling
a separate feature vector from each feature volume,
and mean-pooling across the sampled feature vectors to
produce a single aggregated feature. We experimented
with two alternative aggregation strategies: 1. max-
pooling, and 2. weighted average pooling, where the
feature volumes have an additional channel that is in-
terpreted as a weight by a softmax function. We found
these alternative aggregation strategies to perform sim-
ilarly to mean-pooling.

MLP, f . We use a two-layer ReLU MLP to aggre-
gate features drawn from multiple input images. Our
MLP has an input dimension of 16, two hidden layers
of dimension 64, and an output dimension of 17, which
is interpreted as a 1-channel density τ and a 16-channel
feature c. We additionally skip the MLP’s input fea-
ture to the output feature.

Rendering. We render feature images from the
model using neural volume rendering [12] of fea-
tures [13], from the neural field parameterized by the
set of feature volumes W and the MLP f . For compu-
tational efficiency, we render at half spatial resolution,
i.e. 64 × 64 and use bilinear upsampling to produce a
128× 128 feature image. We use 64 depth samples by
default, scattered along each ray with stratified sam-
pling. We do not use importance sampling.

UNet, U . The design of U is based on
DDPM++ [23], using the implementation and
preconditioning scheme of [9]. U accepts as input 19
total channels (a noisy RGB image, plus a 16-channels
feature rendering) of spatial dimension 1282. It
produces a 3-channel 1282 denoised rendering. For
experiments shown in the manuscript, our models
contain five downsampling blocks with channel multi-
pliers of [128, 128, 256, 256, 256]. As in [23], we utilize
a residual skip connection from the input to U to each
block in the encoder of U .

Training. We use a batch size of 96 for all training
runs, split across 8 A100 GPUs, with a learning rate of
2× 10−5. During training, we sample the noise level σ
according to the method proposed by [9] by drawing σ
from the following distribution:

log(σ) ∼ N (Pmean, P
2
std). (1)

We use Pmean = −1.0, Pstd = 1.4. During train-
ing, we randomly drop out the conditioning informa-
tion with a probability 0.1 to enable classifier-free guid-
ance. In place of the rendered feature image, we insert
random noise.

Our dataset is composed of posed multi-view images,
where for each training image, we are given the 4 × 4
camera pose matrix, the camera field of view, and a
near/far plane. For all experiments, we specify a global
near/far value for each dataset, where the values are
chosen such that a camera frustum with the chosen
near/far planes adequately covers the visible portion
of the scene. For ShapeNet, near/far = (0.8, 1.8); for
MP3D, near/far = (0., 12.5); for CO3D, near/far =
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(0.5, 40). We found our method to be fairly robust to
the chosen values of near/far planes.

For ShapeNet, we train until the model has pro-
cessed 140M images, which takes approximately 9 days
on eight A100 GPUs. For MP3D, we train for 110M im-
ages, which takes approximately 7 days on eight A100
GPUs. For CO3D, we train for 170M images, which
takes approximately eleven days on eight A100 GPUs.

Augmentation. During training, we introduce two
forms of augmentation. First, with probability 0.5, we
add Gaussian white noise to the input images. For in-
put images in the range [−1, 1], we sample the standard
deviation of the added noise uniformly from [0, 0.5].
Second, we apply non-leaking augmentation [9] to U .
With probability 0.1, we apply random flips, random
integer translations (up to 16 pixels), and random 90º
rotations, where the transformations are applied to the
input noisy image, the input feature image, and the tar-
get denoised image. We condition U with a vector that
informs it of the currently applied augmentations; we
zero this vector at inference.

Inference. We use the deterministic second order
sampler proposed in [9] at inference. As a default, we
use N = 25 timesteps, with a noise schedule governed
by σmax = 80, σmin = 0.002, and ρ = 7, where ρ is a
constant that controls the spacing of noise noise levels.
The noise level at a timestep i is given in Eq. 2:

σi<N =

(
σmax

1
ρ +

i

N − 1

(
σmin

1
ρ − σmax

1
ρ

))
. (2)

Rendering an image from scratch with 25 denois-
ing steps takes approximately 1.8 seconds per image at
inference on an RTX 3090 GPU.

“Production” settings for CO3D. For rendering
videos of CO3D, we use more computationally expen-
sive “production” hyperparameters to obtain better
image quality. Seeking better image quality and detail,
we use 256 denoising steps instead of the default 25 de-
noising steps. Seeking better temporal consistency, we
increase the number of samples per ray cast through
the latent feature field, from 64 to 128; we also use the
two-pass form of autoregressive conditioning described
in Sec. A1.7.

A3. Experiment details

A3.1. Evaluation details

FID Calculation. We compute FID by sampling
30,000 images randomly from both the ground truth

testing dataset and corresponding generated frames.
We use an inception network provided in the Style-
GAN3 [10] repository for computing image features.

KID Calculation. We compute KID by sampling
all images from both the ground truth testing dataset
and corresponding generated frames. We use the im-
plementation of clean-fid [14], available at https://

github.com/GaParmar/clean-fid.

COLMAP Reconstructions. We compute
COLMAP reconstructions using frames from ren-
dered video sequences. We provide the ground-truth
camera pose trajectory as input for all reconstructions.
For ShapeNet evaluations, we additionally compute
masks by thresholding images to remove white pixels.
We leave all settings at their recommended default.

Chamfer Distance Calculation. For all datasets,
we compute the bi-directional Chamfer distance be-
tween the reconstructed point cloud from synthesized
images to the reconstructed point cloud from ground
truth images. Additionally, for CO3D, we translate
and scale the reconstructed point clouds to lie within
the unit cube.

A3.2. Baselines

PixelNeRF [26]. We compare to PixelNeRF for
the ShapeNet and CO3D single-image novel view syn-
thesis benchmark. For ShapeNet, we use the offi-
cial implementation and pre-trained weights for single-
category (car), single-image, ShapeNet novel view syn-
thesis evaluation provided at: https://github.com/

sxyu/pixel-nerf. We follow the protocol described in
the original PixelNeRF paper and SRNs [22] for data
pre-processing. We use the provided dataset and splits
in the PixelNeRF repository for training and testing
of both our method and PixelNeRF (this dataset is
slightly different from that used in the SRNs paper due
to a bug; see PixelNeRF supplementary information).
We follow the same protocol for evaluation as we do for
our method and SRNs: view 64 is used as input, and
the remaining 249 views are synthesized conditioned
on this. For CO3D, we train PixelNeRF from scratch
using our train/test splits and using the recommended
hyperparameters.

ViewFormer [11]. We compare to ViewFormer on
the ShapeNet single-image novel view synthesis bench-
mark and qualitatively on single-image novel view syn-
thesis for CO3D. We received the data and results
for single-image novel view synthesis for the entire
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ShapeNet testing set from the authors. We compute
metrics using their provided ground truth data and
synthesized results. The training and testing splits are
the same as those used in our method and in Pixel-
NeRF. They use the previously introduced protocol for
single-image novel view synthesis evaluation: view 64
is used as input, and the remaining 249 views are syn-
thesized conditioned on this. For CO3D, we instead
condition on the first frame from each shown sequence,
and generate a video based on this conditioning infor-
mation. We use provided source code from the offi-
cial repository at: https://github.com/jkulhanek/

viewformer. We do not generate quantitative met-
rics, as ViewFormer operates on masked and center-
cropped images. Additionally, the images, which we
use for comparison are in the training set for View-
Former, while for our method they are in the test set.

Look Outside the Room [16]. We compare
against Look-outside-the-room (LOTR), the cur-
rent state-of-the-art method on novel view synthe-
sis on Matterport3D (MP3D)[1] and RealEstate10K
[28] datasets. For LOTR, we obtained the
pretrained weights for the MP3D dataset from
their official codebase https://github.com/xrenaa/

Look-Outside-Room. We match LOTR’s data prepa-
ration methodology, including identical train/test
splits, and we use LOTR’s implementation for generat-
ing multi-view images from MP3D RGB-D scans. For
testing their method, we prepare a common set of 200
input images from the test split with the trajectories
and ground truth images for the next 10 frames for each
input. Then, we run the LOTR method on the given
input using the code from their Github repository, us-
ing 3 overlapping frame windows, as stated in their
paper. We run LOTR on the next 10 frames, given
the input frame, and measure the metrics against the
ground truth.

Additional Baselines for MP3D To further eval-
uate our method’s effectiveness on the novel-view syn-
thesis task on MP3D scenes, we compare against addi-
tional baselines of GeoGPT [18] and SynSin [25]. Note
that these two baselines, along with another recent
work of PixelSynth [17], have been already shown to
underperform against LOTR [16]. Since GeoGPT does
not provide pre-trained models or rendered images for
MP3D, we inquired the authors of LOTR for the im-
ages they used for the benchmarks. The acquired NVS
images of GeoGPT and SynSin are rendered by the
exact same protocol as our experiments, except that
they proceeded five frames from the initial input im-
ages for 200 sequences (thus we have 1,000 images in

total). We note that the trajectories used for these
acquired images are different from the trajectories we
used for our experiments because the trajectories are
generated randomly via the Habitat embodied agent
simulation [20]. However, at 1000 trajectory samples,
we believe our comparisons are statistically significant.
The final numbers we computed show similar trends to
those reported in the LOTR paper, further confirming
the validity of the comparisons. Both qualitatively and
quantitatively, we observe that our novel-view render-
ings are significantly more desirable.

A3.3. Dataset details

ShapeNet [2]. We extensively evaluate our method
on the ShapeNet dataset. The full ShapeNet dataset
contains different object categories, each with a syn-
thetically generated posed images in pre-defined train-
ing, validation, and testing sets. In our work, we specif-
ically evaluate with the “cars” category, and focus on
single-image novel view synthesis. We use the version
of the dataset provided in PixelNeRF [26] for consis-
tency in training and evaluation, keeping all frames in
the dataset at 1282 resolution and doing no additional
pre-processing. As described in the main paper, the
training set contains 2,458 cars, each with 50 render-
ings randomly distributed on the surface of a sphere.
The test split contains 704 cars, each with 250 rendered
images and poses on an Archimedean spiral. During
the training of our method, we use the defined training
split, randomly sampling between one and three input
frames with the objective of synthesizing a randomly
selected target frame for a specific object instance. In
evaluation, we use the defined testing split, use im-
age number 64 as input, and synthesize the other 249
ground truth images. We note that since these im-
ages are synthetically generated at only 1282, they lack
backgrounds and fine detail. However, the accuracy of
poses in the constrained environment and consistent
evaluation method between baselines allows for eas-
ily providing quantitative benchmarks for single-image
novel view synthesis.

Matterport3D [1]. We showcase our algorithm on
a highly complex, large-scale indoor dataset, Matter-
port3D (MP3D). MP3D contains RGB-D scans of real-
world building interiors. Scenes are calibrated to met-
ric scale, and thus there is no scale ambiguity. We pre-
process MP3D scans into a dataset of posed multi-view
images following the procedure detailed in LOTR [16]
and SynSin [25]. Specifically, we generate the image se-
quences by simulating a navigation agent in the room
scans, using the popular Habitat [20] API. We ran-
domly select the start and end position within the
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MP3D scenes and simulate the navigation towards the
goal via Habitat. The agent is only allowed to take lim-
ited actions, including going forward and rotating 15
degrees. During training, we randomly sample a target
frame and then select 1 to 3 random source frames in
the neighborhood of 20 frames for conditioning.

Common Objects in 3D [15]. We validate our
method on a real-world dataset: Common Objects in
3D (CO3D). The CO3D dataset consists of several cat-
egories. We train on CO3D Hydrants, which contains
726 scenes. The average scene consists of around 200
frames of RGB video, object masks, poses, and semi-
sparse depth. We note that the CO3D dataset is quite
unconstrained: even across scenes within a category,
aspect ratio, resolution, FOV, camera trajectory, ob-
ject scale, and global orientation all vary. Addition-
ally, we note that the dataset is noisy, with several
examples of miscategorized objects and numerous ex-
tremely short or low-quality videos. Such noise adds
to the challenge of single-image NVS.

In preparing data, we first center-crop to the largest
possible square, then resize to 1282 using Lanczos re-
sampling. We adjust the camera intrinsics to reflect
this change. We also seek to normalize the canonical
scale of scenes across the dataset. To do so, we examine
the provided depths within each scene, and consider the
depth values that fall within the object segmentation
mask. For each image, we calculate the median value
of the masked depth. Taking the mean of these median
values across the scene gives us a rough approximation
of the distance between the camera and object. We
adjust the scale of the scene so that this camera-object
distance is identical across every scene in the dataset.

To help resolve scale, which is highly variable across
the dataset, and to provide information parity with
PixelNeRF, which has access to a global reference
frame, we provide our feature encoder, T , with the lo-
cation of the global origin. In addition to each input
RGB image, we concatenate a channel that contains a
depth rendering of the three coordinate planes, as ren-
dered from the input camera. We modify T to accept
the four-channel input. We find this input augmenta-
tion to improve our model’s ability to localize objects.

A4. Discussion

A4.1. Alternative approaches

GAN-based generative novel view synthesis.
We have presented a diffusion-based generative model
for novel view synthesis, but in principle, it is pos-
sible to construct a similar framework around other
types of generative models. Generative Adversarial

Networks [5] (GANs), are a natural fit, and adversarial
training could drop in to replace our diffusion objec-
tive with minor changes. While recent work [4] has
demonstrated that diffusion models often outperform
GANs in mode coverage and image quality, GANs have
a major advantage in speed. Future work that aims for
real-time synthesis may prefer a GAN-based 3D-aware
NVS approach.

Transformer-based, geometry-free multi-view
aggregation strategies. A promising alternative to
explicit geometry priors, such as the type we have pre-
sented in this work, is to instead make use of pow-
erful attention mechanisms for effectively combining
multiple observations. Scene Representation Trans-
formers [19] utilize a transformer-based approach to
merge information from multiple views, which is ef-
fective for NVS on both simple and complex scenes.
We explored an SRT-based variant of Γ, which would
forego explicit geometry priors for a transformer and
light field [21] based conditioning scheme. However,
we had difficulty achieving sufficient convergence and
in justifying the additional compute cost. Neverthe-
less, related approaches could be a promising area for
future study.

A4.2. Limitations

We believe our method to be a valuable step towards
in-the-wild single-view novel view synthesis but we ac-
knowledge several limitations. While we demonstrate
our method to be competitively geometrically consis-
tent, it is not inherently 3D or temporally consistent.
Noticeable flicker and other artifacts are sometimes vis-
ible in rendered sequences.

While our model generally produces plausible ren-
derings, it may not always perfectly transfer details
from the input. On ShapeNet, this sometimes mani-
fests as an inability to replicate the angle of car tires
or the style of windows across the line of symmetry; on
more complex datasets, the model sometimes struggles
to transfer fine details. We use a relatively lightweight,
ResNet-backed Deeplab feature encoder. A more pow-
erful encoder, potentially one that makes use of at-
tention to improve long-range information flow, may
resolve these issues.
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