MIXED PRECISION TRAINING FOR PIX2PIXHD

Ting-Chun Wang
INTRODUCTION
INTRODUCTION
APPLICATIONS: STYLE CHANGING
APPLICATIONS: LABEL CHANGING
APPLICATIONS: ADDING OBJECTS
APPLICATIONS: ADDING STROKES
APPLICATIONS: FACE CHANGING

Image credit: pix2pixHD
Coarse-to-fine Generator Multi-scale Discriminators Robust Objective

Residual blocks

Residual blocks

2

real
synthesized

real

real

synthesized

D_1

D_2

D_3

D_i

match

match

real
Coarse-to-fine Generator

Multi-scale Discriminators

Robust Objective

Residual blocks

real

synthesized

real

synthesized

*Similar ideas in Denton et al. 2015, Huang et al. 2017, Chen et al. 2017, Zhang et al. 2017
Coarse-to-fine Generator

Multi-scale Discriminators

Robust Objective

*Similar ideas in Durugkar et al. 2016, Iizuka et al. 2017, Zhang et al. 2017
Similar ideas in Larsen et al. 2016
from apex import amp

model, [optimizer_G, optimizer_D] = \
 amp.initialize(model, [model.optimizer_G, model.optimizer_D],
 opt_level=cfg.amp)

with amp.scale_loss(loss_G, optimizer_G) as scaled_loss:
 scaled_loss.backward()

with amp.scale_loss(loss_D, optimizer_D) as scaled_loss:
 scaled_loss.backward()
OBTAINED SPEEDUPS
1.8x faster (2.25x faster with doubled batch size)

 Specs:
 Machine: DGX1 V100 16GB
 Batch size: 1 image per batch

Iterations per second

- w/o AMP: 1.60
- AMP O1: 2.89
- AMP O1 2x batch size: 3.57
EVALUATION CRITERIA
Frechet Inception Distance

\[\text{FID} = \| \mu_r - \mu_g \|^2 + \text{Tr}(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{1/2}), \]
EFFECT ON METRICS

In general, the differences are within the error range.

Usually cannot be differentiated by human eyes.
READY TO USE!

https://github.com/NVIDIA/pix2pixHD

Training with Automatic Mixed Precision (AMP) for faster speed

- To train with mixed precision support, please first install apex from: https://github.com/NVIDIA/apex
- You can then train the model by adding --fp16. For example,

```bash
#!/scripts/train_512p.fp16.sh
python -m torch.distributed.launch train.py --name label2city_512p --fp16
```

In our test case, it trains about 80% faster with AMP on a Volta machine.
CONCLUSION
Mixed precision training is useful for pix2pixHD training

1. Drop-in replacement when utilizing NVIDIA APEX AMP library
 Only need to change 4 lines of code!

2. Training is much faster for the same model and batch size
 1.8x speed up

3. Consumes less memory → may train with larger batch size
 2.25x speed up using the same model and 2x batch size