Source code for sionna.phy.channel.generate_time_channel

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0#
"""Class for generating channel responses in the time domain"""

from sionna.phy.block import Object
from sionna.phy.channel.utils import cir_to_time_channel

[docs] class GenerateTimeChannel(Object): # pylint: disable=line-too-long r""" Generate channel responses in the time domain For each batch example, ``num_time_samples`` + ``l_max`` - ``l_min`` time steps of a channel realization are generated by this layer. These can be used to filter a channel input of length ``num_time_samples`` using the :class:`~sionna.phy.channel.ApplyTimeChannel` layer. The channel taps :math:`\bar{h}_{b,\ell}` (``h_time``) returned by this layer are computed assuming a sinc filter is used for pulse shaping and receive filtering. Therefore, given a channel impulse response :math:`(a_{m}(t), \tau_{m}), 0 \leq m \leq M-1`, generated by the ``channel_model``, the channel taps are computed as follows: .. math:: \bar{h}_{b, \ell} = \sum_{m=0}^{M-1} a_{m}\left(\frac{b}{W}\right) \text{sinc}\left( \ell - W\tau_{m} \right) for :math:`\ell` ranging from ``l_min`` to ``l_max``, and where :math:`W` is the ``bandwidth``. Parameters ---------- channel_model : :class:`~sionna.phy.channel.ChannelModel` Channel model to be used bandwidth : `float` Bandwidth (:math:`W`) [Hz] num_time_samples : `int` Number of time samples forming the channel input (:math:`N_B`) l_min : `int` Smallest time-lag for the discrete complex baseband channel (:math:`L_{\text{min}}`) l_max : `int` Largest time-lag for the discrete complex baseband channel (:math:`L_{\text{max}}`) normalize_channel : `bool`, (default `False`) If set to `True`, the channel is normalized over the block size to ensure unit average energy per time step. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ----- batch_size : `None` (default) | `int` Batch size. Defaults to `None` for channel models that do not require this parameter. Output ------- h_time : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_samples + l_max - l_min, l_max - l_min + 1], `tf.complex` Channel responses. For each batch example, ``num_time_samples`` + ``l_max`` - ``l_min`` time steps of a channel realization are generated by this layer. These can be used to filter a channel input of length ``num_time_samples`` using the :class:`~sionna.phy.channel.ApplyTimeChannel` layer. """ def __init__(self, channel_model, bandwidth, num_time_samples, l_min, l_max, normalize_channel=False, precision=None, **kwargs): super().__init__(precision=precision, **kwargs) # Callable used to sample channel input responses self._cir_sampler = channel_model self._l_min = l_min self._l_max = l_max self._l_tot = l_max - l_min + 1 self._bandwidth = bandwidth self._num_time_steps = num_time_samples self._normalize_channel = normalize_channel def __call__(self, batch_size=None): # Sample channel impulse responses # pylint: disable=unbalanced-tuple-unpacking h, tau = self._cir_sampler( batch_size, self._num_time_steps + self._l_tot - 1, self._bandwidth) hm = cir_to_time_channel(self._bandwidth, h, tau, self._l_min, self._l_max, self._normalize_channel) return hm