Source code for sionna.phy.channel.spatial_correlation

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0#
"""Various classes for spatially correlated flat-fading channels"""

from abc import abstractmethod
import tensorflow as tf
from tensorflow.experimental.numpy import swapaxes
from sionna.phy.block import Object
from sionna.phy.utils import expand_to_rank

[docs] class SpatialCorrelation(Object): # pylint: disable=line-too-long r"""Abstract class that defines an interface for spatial correlation functions The :class:`~sionna.phy.channel.FlatFadingChannel` model can be configured with a spatial correlation model. Parameters ---------- precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ----- h : `tf.complex` Tensor of arbitrary shape containing spatially uncorrelated channel coefficients Output ------ h_corr : `tf.complex` Tensor of the same shape as ``h`` containing the spatially correlated channel coefficients """ @abstractmethod def __call__(self, h, *args, **kwargs): return NotImplemented
[docs] class KroneckerModel(SpatialCorrelation): # pylint: disable=line-too-long r"""Kronecker model for spatial correlation Given a batch of matrices :math:`\mathbf{H}\in\mathbb{C}^{M\times K}`, :math:`\mathbf{R}_\text{tx}\in\mathbb{C}^{K\times K}`, and :math:`\mathbf{R}_\text{rx}\in\mathbb{C}^{M\times M}`, this function will generate the following output: .. math:: \mathbf{H}_\text{corr} = \mathbf{R}^{\frac12}_\text{rx} \mathbf{H} \mathbf{R}^{\frac12}_\text{tx} Note that :math:`\mathbf{R}_\text{tx}\in\mathbb{C}^{K\times K}` and :math:`\mathbf{R}_\text{rx}\in\mathbb{C}^{M\times M}` must be positive semi-definite, such as the ones generated by :meth:`~sionna.phy.channel.exp_corr_mat`. Parameters ---------- r_tx : [..., K, K], `tf.complex` Transmit correlation matrices. If the rank of ``r_tx`` is smaller than that of the input ``h``, it will be broadcast. r_rx : [..., M, M], `tf.complex` Receive correlation matrices. If the rank of ``r_rx`` is smaller than that of the input ``h``, it will be broadcast. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ----- h : [..., M, K], `tf.complex` Spatially uncorrelated channel coeffficients Output ------ h_corr : [..., M, K], `tf.complex` Spatially correlated channel coefficients """ def __init__(self, r_tx=None, r_rx=None, precision=None): super().__init__(precision=None) self.r_tx = r_tx self.r_rx = r_rx @property def r_tx(self): r""" [..., K, K], `tf.complex` : Get/set transmit correlation matrices """ return self._r_tx @r_tx.setter def r_tx(self, value): self._r_tx = value @property def r_rx(self): r""" [..., M, M], `tf.complex` : Get/set receive correlation matrices """ return self._r_rx @r_rx.setter def r_rx(self, value): self._r_rx = value def __call__(self, h): if self.r_tx is not None: l_tx = tf.linalg.cholesky(self.r_tx) h = tf.matmul(h, l_tx, adjoint_b=True) if self.r_rx is not None: l_rx = tf.linalg.cholesky(self.r_rx) h = tf.matmul(l_rx, h) return h
[docs] class PerColumnModel(SpatialCorrelation): # pylint: disable=line-too-long r"""Per-column model for spatial correlation Given a batch of matrices :math:`\mathbf{H}\in\mathbb{C}^{M\times K}` and correlation matrices :math:`\mathbf{R}_k\in\mathbb{C}^{M\times M}, k=1,\dots,K`, this function will generate the output :math:`\mathbf{H}_\text{corr}\in\mathbb{C}^{M\times K}`, with columns .. math:: \mathbf{h}^\text{corr}_k = \mathbf{R}^{\frac12}_k \mathbf{h}_k,\quad k=1, \dots, K where :math:`\mathbf{h}_k` is the kth column of :math:`\mathbf{H}`. Note that all :math:`\mathbf{R}_k\in\mathbb{C}^{M\times M}` must be positive semi-definite, such as the ones generated by :meth:`~sionna.phy.channel.one_ring_corr_mat`. This model is typically used to simulate a MIMO channel between multiple single-antenna users and a base station with multiple antennas. The resulting SIMO channel for each user has a different spatial correlation. Parameters ---------- r_rx : [..., M, M], `tf.complex` Receive correlation matrices. If the rank of ``r_rx`` is smaller than that of the input ``h``, it will be broadcast. For a typically use of this model, ``r_rx`` has shape [..., K, M, M], i.e., a different correlation matrix for each column of ``h``. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ----- h : [..., M, K], `tf.complex` Spatially uncorrelated channel coeffficients Output ------ h_corr : [..., M, K], tf.complex Spatially correlated channel coefficients """ def __init__(self, r_rx, precision=None): super().__init__(precision=precision) self.r_rx = r_rx @property def r_rx(self): r""" [..., M, M], `tf.complex` : Get/set receive correlation matrices """ return self._r_rx @r_rx.setter def r_rx(self, value): self._r_rx = value def __call__(self, h): if self.r_rx is not None: l_rx = tf.linalg.cholesky(self.r_rx) h = swapaxes(h, -2, -1) h = tf.expand_dims(h, -1) l_rx = expand_to_rank(l_rx, tf.rank(h), 0) h = tf.matmul(l_rx, h) h = tf.squeeze(h, -1) h = swapaxes(h, -2, -1) return h