Source code for sionna.phy.channel.utils

# pylint: disable=too-many-locals, too-many-arguments, too-many-positional-arguments
# pylint: disable=line-too-long, too-many-lines
#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0#
"""Utility functions for the channel module"""

import warnings
import tensorflow as tf

from sionna.phy.utils import expand_to_rank, sample_bernoulli
from sionna.phy import PI, config, dtypes


[docs] def subcarrier_frequencies(num_subcarriers, subcarrier_spacing, precision=None): # pylint: disable=line-too-long r""" Compute the baseband frequencies of ``num_subcarrier`` subcarriers spaced by ``subcarrier_spacing``, i.e., >>> # If num_subcarrier is even: >>> frequencies = [-num_subcarrier/2, ..., 0, ..., num_subcarrier/2-1] * subcarrier_spacing >>> >>> # If num_subcarrier is odd: >>> frequencies = [-(num_subcarrier-1)/2, ..., 0, ..., (num_subcarrier-1)/2] * subcarrier_spacing Input ------ num_subcarriers : `int` Number of subcarriers subcarrier_spacing : `float` Subcarrier spacing [Hz] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ frequencies : [``num_subcarrier``], `tf.float` Baseband frequencies of subcarriers """ if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] start = - (num_subcarriers // 2) if num_subcarriers % 2 == 0: limit = num_subcarriers // 2 else: limit = num_subcarriers // 2 + 1 frequencies = tf.range(start=start, limit=limit, dtype=rdtype) frequencies = frequencies*subcarrier_spacing return frequencies
[docs] def time_frequency_vector(num_samples, sample_duration, precision=None): # pylint: disable=line-too-long r""" Compute the time and frequency vector for a given number of samples and duration per sample in normalized time unit. >>> t = tf.cast(tf.linspace(-n_min, n_max, num_samples), dtype) * sample_duration >>> f = tf.cast(tf.linspace(-n_min, n_max, num_samples), dtype) * 1/(sample_duration*num_samples) Input ------ num_samples : `int` Number of samples sample_duration : `float` Sample duration in normalized time precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ t : [``num_samples``], `tf.float` Time vector f : [``num_samples``], `tf.float` Frequency vector """ if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] num_samples = int(num_samples) if tf.math.mod(num_samples, 2) == 0: # if even n_min = tf.cast(-(num_samples) / 2, dtype=tf.int32) n_max = tf.cast((num_samples) / 2 - 1, dtype=tf.int32) else: # if odd n_min = tf.cast(-(num_samples-1) / 2, dtype=tf.int32) n_max = tf.cast((num_samples+1) / 2 - 1, dtype=tf.int32) # Time vector t = tf.cast(tf.linspace(n_min, n_max, num_samples), rdtype) \ * tf.cast(sample_duration, rdtype) # Frequency vector df = tf.cast(1.0/sample_duration, rdtype)/tf.cast(num_samples, rdtype) f = tf.cast(tf.linspace(n_min, n_max, num_samples), rdtype) \ * tf.cast(df, rdtype) return t, f
[docs] def time_lag_discrete_time_channel(bandwidth, maximum_delay_spread=3e-6): # pylint: disable=line-too-long r""" Compute the smallest and largest time-lag for the descrete complex baseband channel, i.e., :math:`L_{\text{min}}` and :math:`L_{\text{max}}`. The smallest time-lag (:math:`L_{\text{min}}`) returned is always -6, as this value was found small enough for all models included in Sionna. The largest time-lag (:math:`L_{\text{max}}`) is computed from the ``bandwidth`` and ``maximum_delay_spread`` as follows: .. math:: L_{\text{max}} = \lceil W \tau_{\text{max}} \rceil + 6 where :math:`L_{\text{max}}` is the largest time-lag, :math:`W` the ``bandwidth``, and :math:`\tau_{\text{max}}` the ``maximum_delay_spread``. The default value for the ``maximum_delay_spread`` is 3us, which was found to be large enough to include most significant paths with all channel models included in Sionna assuming a nominal delay spread of 100ns. Note ---- The values of :math:`L_{\text{min}}` and :math:`L_{\text{max}}` computed by this function are only recommended values. :math:`L_{\text{min}}` and :math:`L_{\text{max}}` should be set according to the considered channel model. For OFDM systems, one also needs to be careful that the effective length of the complex baseband channel is not larger than the cyclic prefix length. Input ------ bandwidth : `float` Bandwith (:math:`W`) [Hz] maximum_delay_spread : `float`, (default 3e-6) Maximum delay spread [s] Output ------- l_min : `int` Smallest time-lag (:math:`L_{\text{min}}`) for the descrete complex baseband channel. Set to -6, , as this value was found small enough for all models included in Sionna. l_max : `int` Largest time-lag (:math:`L_{\text{max}}`) for the descrete complex baseband channel """ l_min = tf.cast(-6, tf.int32) l_max = tf.math.ceil(maximum_delay_spread*bandwidth) + 6 l_max = tf.cast(l_max, tf.int32) return l_min, l_max
[docs] def cir_to_ofdm_channel(frequencies, a, tau, normalize=False): # pylint: disable=line-too-long r""" Compute the frequency response of the channel at ``frequencies`` Given a channel impulse response :math:`(a_{m}, \tau_{m}), 0 \leq m \leq M-1` (inputs ``a`` and ``tau``), the channel frequency response for the frequency :math:`f` is computed as follows: .. math:: \widehat{h}(f) = \sum_{m=0}^{M-1} a_{m} e^{-j2\pi f \tau_{m}} Input ------ frequencies : [fft_size], `tf.float` Frequencies at which to compute the channel response a : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths, num_time_steps], `tf.complex` Path coefficients tau : [batch size, num_rx, num_tx, num_paths] or [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths], `tf.float` Path delays normalize : `bool`, (default `False`) If set to `True`, the channel is normalized over the resource grid Output ------- h_f : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_steps, fft_size], `tf.complex` Channel frequency responses at ``frequencies`` """ real_dtype = tau.dtype if len(tau.shape) == 4: # Expand dims to broadcast with h. Add the following dimensions: # - number of rx antennas (2) # - number of tx antennas (4) tau = tf.expand_dims(tf.expand_dims(tau, axis=2), axis=4) # Broadcast is not supported yet by TF for such high rank tensors. # We therefore do part of it manually tau = tf.tile(tau, [1, 1, 1, 1, a.shape[4], 1]) # Add a time samples dimension for broadcasting tau = tf.expand_dims(tau, axis=6) # Bring all tensors to broadcastable shapes tau = tf.expand_dims(tau, axis=-1) h = tf.expand_dims(a, axis=-1) frequencies = expand_to_rank(frequencies, tf.rank(tau), axis=0) # Compute the Fourier transforms of all cluster taps # Exponential component e = tf.exp(tf.complex(tf.constant(0, real_dtype), -2*PI*frequencies*tau)) h_f = h*e # Sum over all clusters to get the channel frequency responses h_f = tf.reduce_sum(h_f, axis=-3) if normalize: # Normalization is performed such that for each batch example and # link the energy per resource grid is one. # Average over TX antennas, RX antennas, OFDM symbols and # subcarriers. c = tf.reduce_mean(tf.square(tf.abs(h_f)), axis=(2, 4, 5, 6), keepdims=True) c = tf.complex(tf.sqrt(c), tf.constant(0., real_dtype)) h_f = tf.math.divide_no_nan(h_f, c) return h_f
[docs] def cir_to_time_channel(bandwidth, a, tau, l_min, l_max, normalize=False): # pylint: disable=line-too-long r""" Compute the channel taps forming the discrete complex-baseband representation of the channel from the channel impulse response (``a``, ``tau``) This function assumes that a sinc filter is used for pulse shaping and receive filtering. Therefore, given a channel impulse response :math:`(a_{m}(t), \tau_{m}), 0 \leq m \leq M-1`, the channel taps are computed as follows: .. math:: \bar{h}_{b, \ell} = \sum_{m=0}^{M-1} a_{m}\left(\frac{b}{W}\right) \text{sinc}\left( \ell - W\tau_{m} \right) for :math:`\ell` ranging from ``l_min`` to ``l_max``, and where :math:`W` is the ``bandwidth``. Input ------ bandwidth : `float` Bandwidth [Hz] a : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths, num_time_steps], `tf.complex` Path coefficients tau : [batch size, num_rx, num_tx, num_paths] or [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths], `tf.float` Path delays [s] l_min : `int` Smallest time-lag for the discrete complex baseband channel (:math:`L_{\text{min}}`) l_max : `int` Largest time-lag for the discrete complex baseband channel (:math:`L_{\text{max}}`) normalize : `bool`, (default `False`) If set to `True`, the channel is normalized over the block size to ensure unit average energy per time step. Output ------- hm : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_steps, l_max - l_min + 1], `tf.complex` Channel taps coefficients """ real_dtype = tau.dtype if len(tau.shape) == 4: # Expand dims to broadcast with h. Add the following dimensions: # - number of rx antennas (2) # - number of tx antennas (4) tau = tf.expand_dims(tf.expand_dims(tau, axis=2), axis=4) # Broadcast is not supported by TF for such high rank tensors. # We therefore do part of it manually tau = tf.tile(tau, [1, 1, 1, 1, a.shape[4], 1]) # Add a time samples dimension for broadcasting tau = tf.expand_dims(tau, axis=6) # Time lags for which to compute the channel taps l = tf.range(l_min, l_max+1, dtype=real_dtype) # Bring tau and l to broadcastable shapes tau = tf.expand_dims(tau, axis=-1) l = expand_to_rank(l, tau.shape.rank, axis=0) # sinc pulse shaping g = tf.experimental.numpy.sinc(l-tau*bandwidth) g = tf.complex(g, tf.constant(0., real_dtype)) a = tf.expand_dims(a, axis=-1) # For every tap, sum the sinc-weighted coefficients hm = tf.reduce_sum(a*g, axis=-3) if normalize: # Normalization is performed such that for each batch example and # link the energy per block is one. # The total energy of a channel response is the sum of the squared # norm over the channel taps. # Average over block size, RX antennas, and TX antennas c = tf.reduce_mean(tf.reduce_sum(tf.square(tf.abs(hm)), axis=6, keepdims=True), axis=(2, 4, 5), keepdims=True) c = tf.complex(tf.sqrt(c), tf.constant(0., real_dtype)) hm = tf.math.divide_no_nan(hm, c) return hm
[docs] def time_to_ofdm_channel(h_t, rg, l_min): # pylint: disable=line-too-long r""" Compute the channel frequency response from the discrete complex-baseband channel impulse response Given a discrete complex-baseband channel impulse response :math:`\bar{h}_{b,\ell}`, for :math:`\ell` ranging from :math:`L_\text{min}\le 0` to :math:`L_\text{max}`, the discrete channel frequency response is computed as .. math:: \hat{h}_{b,n} = \sum_{k=0}^{L_\text{max}} \bar{h}_{b,k} e^{-j \frac{2\pi kn}{N}} + \sum_{k=L_\text{min}}^{-1} \bar{h}_{b,k} e^{-j \frac{2\pi n(N+k)}{N}}, \quad n=0,\dots,N-1 where :math:`N` is the FFT size and :math:`b` is the time step. This function only produces one channel frequency response per OFDM symbol, i.e., only values of :math:`b` corresponding to the start of an OFDM symbol (after cyclic prefix removal) are considered. Input ------ h_t : [...num_time_steps,l_max-l_min+1], `tf.complex` Tensor of discrete complex-baseband channel impulse responses resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` Resource grid l_min : `int` Smallest time-lag for the discrete complex baseband channel impulse response (:math:`L_{\text{min}}`) Output ------ h_f : [...,num_ofdm_symbols,fft_size], `tf.complex` Tensor of discrete complex-baseband channel frequency responses Note ---- Note that the result of this function is generally different from the output of :meth:`~sionna.phy.channel.utils.cir_to_ofdm_channel` because the discrete complex-baseband channel impulse response is truncated (see :meth:`~sionna.phy.channel.utils.cir_to_time_channel`). This effect can be observed in the example below. Examples -------- .. code-block:: Python # Setup resource grid and channel model sm = StreamManagement(np.array([[1]]), 1) rg = ResourceGrid(num_ofdm_symbols=1, fft_size=1024, subcarrier_spacing=15e3) tdl = TDL("A", 100e-9, 3.5e9) # Generate CIR cir = tdl(batch_size=1, num_time_steps=1, sampling_frequency=rg.bandwidth) # Generate OFDM channel from CIR frequencies = subcarrier_frequencies(rg.fft_size, rg.subcarrier_spacing) h_freq = tf.squeeze(cir_to_ofdm_channel(frequencies, *cir, normalize=True)) # Generate time channel from CIR l_min, l_max = time_lag_discrete_time_channel(rg.bandwidth) h_time = cir_to_time_channel(rg.bandwidth, *cir, l_min=l_min, l_max=l_max, normalize=True) # Generate OFDM channel from time channel h_freq_hat = tf.squeeze(time_to_ofdm_channel(h_time, rg, l_min)) # Visualize results plt.figure() plt.plot(np.real(h_freq), "-") plt.plot(np.real(h_freq_hat), "--") plt.plot(np.imag(h_freq), "-") plt.plot(np.imag(h_freq_hat), "--") plt.xlabel("Subcarrier index") plt.ylabel(r"Channel frequency response") plt.legend(["OFDM Channel (real)", "OFDM Channel from time (real)", "OFDM Channel (imag)", "OFDM Channel from time (imag)"]) .. image:: ../figures/time_to_ofdm_channel.png """ # Totla length of an OFDM symbol including cyclic prefix ofdm_length = rg.fft_size + rg.cyclic_prefix_length # Downsample the impulse respons to one sample per OFDM symbol h_t = h_t[..., rg.cyclic_prefix_length:rg.num_time_samples:ofdm_length, :] # Pad channel impulse response with zeros to the FFT size pad_dims = rg.fft_size - tf.shape(h_t)[-1] pad_shape = tf.concat([tf.shape(h_t)[:-1], [pad_dims]], axis=-1) h_t = tf.concat([h_t, tf.zeros(pad_shape, dtype=h_t.dtype)], axis=-1) # Circular shift of negative time lags so that the channel impulse reponse # starts with h_{b,0} h_t = tf.roll(h_t, l_min, axis=-1) # Compute FFT h_f = tf.signal.fft(h_t) # Move the zero subcarrier to the center of the spectrum h_f = tf.signal.fftshift(h_f, axes=-1) return h_f
[docs] def deg_2_rad(x): r""" Convert degree to radian Input ------ x : Tensor, `tf.float` Angles in degree Output ------- y : Tensor, `tf.float` Angles ``x`` converted to radian """ return x*tf.constant(PI/180.0, x.dtype)
[docs] def rad_2_deg(x): r""" Convert radian to degree Input ------ x : Tensor, `tf.float` Angles in radian Output ------- y : Tensor, `tf.float` Angles ``x`` converted to degree """ return x*tf.constant(180.0/PI, x.dtype)
[docs] def wrap_angle_0_360(angle): r""" Wrap ``angle`` to (0,360) Input ------ angle : Tensor, `tf.float` Input to wrap Output ------- y : Tensor, `tf.float` ``angle`` wrapped to (0,360) """ return tf.math.mod(angle, 360.)
[docs] def drop_uts_in_sector(batch_size, num_ut, min_bs_ut_dist, isd, bs_height=0., ut_height=0., precision=None): r""" Sample UT locations uniformly at random within a sector The sector from which UTs are sampled is shown in the following figure. The BS is assumed to be located at the origin (0,0) of the coordinate system. .. figure:: ../figures/drop_uts_in_sector.png :align: center :scale: 30% Input -------- batch_size : `int` Batch size num_ut : `int` Number of UTs to sample per batch example min_bs_ut_dist : `tf.float` Minimum BS-UT distance [m] isd : `tf.float` Inter-site distance, i.e., the distance between two adjacent BSs [m] bs_height : `tf.float`, (default 0) BS height, i.e., distance between the BS and the X-Y plane [m] ut_height : `tf.float` UT height, i.e., distance between the UT and the X-Y plane [m] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ ut_loc : [batch_size, num_ut, 2], `tf.float` UT locations in the X-Y plane """ if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Cast to rdtype d_min = tf.cast(min_bs_ut_dist, rdtype) bs_height = tf.cast(bs_height, rdtype) ut_height = tf.cast(ut_height, rdtype) # Force the minimum BS-UT distance >= their height difference d_min = tf.maximum(d_min, tf.abs(bs_height - ut_height)) r = tf.cast(isd*0.5, rdtype) # Minimum squared distance between BS and UT on the X-Y plane r_min2 = d_min**2 - (bs_height - ut_height)**2 # Angles from (-pi/6, pi/6), covering half of the sector and denoted by # alpha_half, are randomly sampled for all UTs. # Then, the maximum distance of UTs from the BS, denoted by r_max, # is computed for each angle. # For each angles, UT positions are sampled such that their *squared* from # the BTS is uniformly sampled from the range (r_min**2, r_max**2) # Each UT is then randomly and uniformly pushed to a half of the sector # by adding either PI/6 or PI/2 to the angle alpha_half # Sample angles for half of the sector (which half will be decided randomly) alpha_half = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=-PI/6., maxval=PI/6., dtype=rdtype) # Maximum distance (computed on the X-Y plane) from BS to a point in # the sector, at each angle in alpha_half r_max = r / tf.math.cos(alpha_half) # To ensure the UT distribution to be uniformly distributed across the # sector, we sample positions such that their *squared* distance from # the BS is uniformly distributed within (r_min**2, r_max**2) distance2 = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=r_min2, maxval=r_max**2, dtype=rdtype) distance = tf.sqrt(distance2) # Randomly assign the UTs to one of the two halves of the sector side = sample_bernoulli([batch_size, num_ut], tf.cast(0.5, rdtype), precision=precision) side = tf.cast(side, rdtype) side = 2.*side + 1. alpha = alpha_half + side*PI/6. # Compute UT locations in the X-Y plane ut_loc = tf.stack([distance*tf.math.cos(alpha), distance*tf.math.sin(alpha)], axis=-1) return ut_loc
[docs] def set_3gpp_scenario_parameters(scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability=None, min_ut_velocity=None, max_ut_velocity=None, precision=None): r""" Set valid parameters for a specified 3GPP system level ``scenario`` (RMa, UMi, or UMa) If a parameter is given, then it is returned. If it is set to `None`, then a parameter valid according to the chosen scenario is returned (see [TR38901]_). Input -------- scenario : "uma" | "umi" | "rma" | "uma-calibration" | "umi-calibration" System level model scenario min_bs_ut_dist : `None` (default) | `tf.float` Minimum BS-UT distance [m] isd : `None` (default) | `tf.float` Inter-site distance [m] bs_height : `None` (default) | `tf.float` BS elevation [m] min_ut_height : `None` (default) | `tf.float` Minimum UT elevation [m] max_ut_height : `None` (default) | `tf.float` Maximum UT elevation [m] indoor_probability : `None` (default) | `tf.float` Probability of a UT to be indoor min_ut_velocity : `None` (default) | `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `None` (default) | `tf.float` Maximim UT velocity [m/s] precision : str, `None` (default) | 'single' | 'double' Precision used for internal calculations and outputs. If set to `None`, :py:attr:`~sionna.phy.config.precision` is used. Output -------- min_bs_ut_dist : `tf.float` Minimum BS-UT distance [m] isd : `tf.float` Inter-site distance [m] bs_height : `tf.float` BS elevation [m] min_ut_height : `tf.float` Minimum UT elevation [m] max_ut_height : `tf.float` Maximum UT elevation [m] indoor_probability : `tf.float` Probability of a UT to be indoor min_ut_velocity : `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `tf.float` Maximim UT velocity [m/s] """ assert scenario in ('umi', 'uma', 'rma', 'umi-calibration', 'uma-calibration'), \ "`scenario` must be one of 'umi', 'uma', 'rma', 'umi-calibration', 'uma-calibration'" if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Default values for scenario parameters. # All distances and heights are in meters # All velocities are in meters per second. default_scenario_par = { 'umi': { 'min_bs_ut_dist': tf.constant(10., rdtype), 'isd': tf.constant(200., rdtype), 'bs_height': tf.constant(10., rdtype), 'min_ut_height': tf.constant(1.5, rdtype), 'max_ut_height': tf.constant(1.5, rdtype), 'indoor_probability': tf.constant(0.8, rdtype), 'min_ut_velocity': tf.constant(0.0, rdtype), 'max_ut_velocity': tf.constant(0.0, rdtype) }, 'umi-calibration': { 'min_bs_ut_dist': tf.constant(0., rdtype), 'isd': tf.constant(200., rdtype), 'bs_height': tf.constant(10., rdtype), 'min_ut_height': tf.constant(1.5, rdtype), 'max_ut_height': tf.constant(1.5, rdtype), 'indoor_probability': tf.constant(0.8, rdtype), 'min_ut_velocity': tf.constant(3./3.6, rdtype), 'max_ut_velocity': tf.constant(3./3.6, rdtype) }, 'uma': { 'min_bs_ut_dist': tf.constant(35., rdtype), 'isd': tf.constant(500., rdtype), 'bs_height': tf.constant(25., rdtype), 'min_ut_height': tf.constant(1.5, rdtype), 'max_ut_height': tf.constant(1.5, rdtype), 'indoor_probability': tf.constant(0.8, rdtype), 'min_ut_velocity': tf.constant(0.0, rdtype), 'max_ut_velocity': tf.constant(0.0, rdtype), }, 'uma-calibration': { 'min_bs_ut_dist': tf.constant(0., rdtype), 'isd': tf.constant(500., rdtype), 'bs_height': tf.constant(25., rdtype), 'min_ut_height': tf.constant(1.5, rdtype), 'max_ut_height': tf.constant(1.5, rdtype), 'indoor_probability': tf.constant(0.8, rdtype), 'min_ut_velocity': tf.constant(3./3.6, rdtype), 'max_ut_velocity': tf.constant(3./3.6, rdtype), }, 'rma': { 'min_bs_ut_dist': tf.constant(35., rdtype), 'isd': tf.constant(5000., rdtype), 'bs_height': tf.constant(35., rdtype), 'min_ut_height': tf.constant(1.5, rdtype), 'max_ut_height': tf.constant(1.5, rdtype), 'indoor_probability': tf.constant(0.5, rdtype), 'min_ut_velocity': tf.constant(0.0, rdtype), 'max_ut_velocity': tf.constant(0.0, rdtype) } } # Setting the scenario parameters if min_bs_ut_dist is None: min_bs_ut_dist = default_scenario_par[scenario]['min_bs_ut_dist'] if isd is None: isd = default_scenario_par[scenario]['isd'] if bs_height is None: bs_height = default_scenario_par[scenario]['bs_height'] if min_ut_height is None: min_ut_height = default_scenario_par[scenario]['min_ut_height'] if max_ut_height is None: max_ut_height = default_scenario_par[scenario]['max_ut_height'] if indoor_probability is None: indoor_probability = default_scenario_par[scenario]['indoor_probability'] if min_ut_velocity is None: min_ut_velocity = default_scenario_par[scenario]['min_ut_velocity'] if max_ut_velocity is None: max_ut_velocity = default_scenario_par[scenario]['max_ut_velocity'] return min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, \ indoor_probability, min_ut_velocity, max_ut_velocity
[docs] def relocate_uts(ut_loc, sector_id, cell_loc): # pylint: disable=line-too-long r""" Relocate the UTs by rotating them into the sector with index ``sector_id`` and transposing them to the cell centered on ``cell_loc`` ``sector_id`` gives the index of the sector to which the UTs are rotated to. The picture below shows how the three sectors of a cell are indexed. .. figure:: ../figures/panel_array_sector_id.png :align: center :scale: 30% Indexing of sectors If ``sector_id`` is a scalar, then all UTs are relocated to the same sector indexed by ``sector_id``. If ``sector_id`` is a tensor, it should be broadcastable with [``batch_size``, ``num_ut``], and give the sector in which each UT or batch example is relocated to. When calling the function, ``ut_loc`` gives the locations of the UTs to relocate, which are all assumed to be in sector with index 0, and in the cell centered on the origin (0,0). Input -------- ut_loc : [batch_size, num_ut, 2], `tf.float` UTs locations in the X-Y plan sector_id : Tensor broadcastable with [batch_size, num_ut], `int` Indexes of the sector to which to relocate the UTs cell_loc : Tensor broadcastable with [batch_size, num_ut], `tf.float` Center of the cell to which to transpose the UTs Output ------ ut_loc : [batch_size, num_ut, 2], `tf.float` Relocated UTs locations in the X-Y plan """ # Expand the rank of sector_id such that is is broadcastable with # (batch size, num_ut) sector_id = tf.cast(sector_id, ut_loc.dtype) sector_id = expand_to_rank(sector_id, 2, 0) # Expant cell_loc = tf.cast(cell_loc, ut_loc.dtype) cell_loc = expand_to_rank(cell_loc, tf.rank(ut_loc), 0) # Rotation matrix tensor, broadcastable with [batch size, num uts, 2, 2] rotation_angle = sector_id*2.*PI/3.0 rotation_matrix = tf.stack([tf.math.cos(rotation_angle), -tf.math.sin(rotation_angle), tf.math.sin(rotation_angle), tf.math.cos(rotation_angle)], axis=-1) rotation_matrix = tf.reshape(rotation_matrix, tf.concat([tf.shape(rotation_angle), [2, 2]], axis=-1)) rotation_matrix = tf.cast(rotation_matrix, ut_loc.dtype) # Applying the rotation matrix ut_loc = tf.expand_dims(ut_loc, axis=-1) ut_loc_rotated = tf.squeeze(rotation_matrix@ut_loc, axis=-1) # Translate to the BS location ut_loc_rotated_translated = ut_loc_rotated + cell_loc return ut_loc_rotated_translated
def generate_uts_topology(batch_size, num_ut, drop_area, cell_loc_xy, min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision=None): # pylint: disable=line-too-long r""" Sample UTs location from a sector or a cell Input -------- batch_size : `int` Batch size num_ut : `int` Number of UTs to sample per batch example drop_area : "sector" | "cell" If set to "sector", UTs are sampled from the sector with index 0 in the figure below .. figure:: ../figures/panel_array_sector_id.png :align: center :scale: 30% Indexing of sectors cell_loc_xy : Tensor broadcastable with[batch_size, num_ut, 3], `tf.float` Center of the cell(s) min_bs_ut_dist : `None` | `tf.float` Minimum BS-UT distance [m] isd : `None` | `tf.float` Inter-site distance [m] min_ut_height : `None` | `tf.float` Minimum UT elevation [m] max_ut_height : `None` | `tf.float` Maximum UT elevation [m] indoor_probability : `None` | `tf.float` Probability of a UT to be indoor min_ut_velocity : `None` | `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `None` | `tf.float` Maximum UT velocity [m/s] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ ut_loc : [batch_size, num_ut, 3], `tf.float` UTs locations ut_orientations : [batch_size, num_ut, 3], `tf.float` UTs orientations [radian] ut_velocities : [batch_size, num_ut, 3], `tf.float` UTs velocities [m/s]. The norm is drawn uniformly at random between ``min_ut_velocity`` and ``max_ut_velocity`, while the direction is planar and drawn uniformly at random between 0 and :math:`2\pi` in_state : [batch_size, num_ut], `tf.float` Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. """ assert drop_area in ('sector', 'cell'), \ "Drop area must be either 'sector' or 'cell'" if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Randomly generating the UT locations ut_loc_xy = drop_uts_in_sector(batch_size, num_ut, min_bs_ut_dist, isd, precision=precision) if drop_area == 'sector': sectors = tf.constant(0, tf.int32) else: # 'cell' sectors = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=0, maxval=3, dtype=tf.int32) ut_loc_xy = relocate_uts(ut_loc_xy, sectors, cell_loc_xy) ut_loc_z = config.tf_rng.uniform(shape=[batch_size, num_ut, 1], minval=min_ut_height, maxval=max_ut_height, dtype=rdtype) ut_loc = tf.concat([ut_loc_xy, ut_loc_z], axis=-1) # Draw random UT orientation, velocity and indoor state ut_orientations, ut_velocities, in_state = \ random_ut_properties(batch_size, num_ut, indoor_probability, min_ut_velocity, max_ut_velocity, precision=precision) return ut_loc, ut_orientations, ut_velocities, in_state def random_ut_properties(batch_size, num_ut, indoor_probability, min_ut_velocity, max_ut_velocity, precision=None): r""" Draw random values for UT velocity, orientation and indoor state Input -------- batch_size : `int` Batch size num_ut : `int` Number of UTs to sample per batch example indoor_probability : `None` | `tf.float` Probability of a UT to be indoor min_ut_velocity : `None` | `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `None` | `tf.float` Maximum UT velocity [m/s] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ ut_orientations : [batch_size, num_ut, 3], `tf.float` UTs orientations [radian] ut_velocities : [batch_size, num_ut, 3], `tf.float` UTs velocity vectors [m/s]. The norm is drawn uniformly at random between ``min_ut_velocity`` and ``max_ut_velocity`, while the direction is planar and drawn uniformly at random between 0 and :math:`2\pi` in_state : [batch_size, num_ut], `tf.float` Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. """ if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Randomly generating the UT indoor/outdoor state in_state = sample_bernoulli([batch_size, num_ut], indoor_probability, precision=precision) # Randomly generate the UT velocities ut_vel_angle = config.tf_rng.uniform([batch_size, num_ut], minval=-PI, maxval=PI, dtype=rdtype) ut_vel_norm = config.tf_rng.uniform([batch_size, num_ut], minval=min_ut_velocity, maxval=max_ut_velocity, dtype=rdtype) ut_velocities = tf.stack([ut_vel_norm*tf.math.cos(ut_vel_angle), ut_vel_norm*tf.math.sin(ut_vel_angle), tf.zeros([batch_size, num_ut], rdtype)], axis=-1) # Randomly generate the UT orientations ut_bearing = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=rdtype) ut_downtilt = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=rdtype) ut_slant = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=rdtype) ut_orientations = tf.stack([ut_bearing, ut_downtilt, ut_slant], axis=-1) return ut_orientations, ut_velocities, in_state
[docs] def gen_single_sector_topology(batch_size, num_ut, scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability=None, min_ut_velocity=None, max_ut_velocity=None, precision=None): # pylint: disable=line-too-long r""" Generate a batch of topologies consisting of a single BS located at the origin and ``num_ut`` UTs randomly and uniformly dropped in a cell sector The following picture shows the sector from which UTs are sampled. .. figure:: ../figures/drop_uts_in_sector.png :align: center :scale: 30% UT velocity and orientation are drawn uniformly at random, whereas the BS points towards the center of the sector it serves. The drop configuration can be controlled through the optional parameters. Parameters set to `None` are set to valid values according to the chosen ``scenario`` (see [TR38901]_). The returned batch of topologies can be used as-is with the :meth:`set_topology` method of the system level models, i.e. :class:`~sionna.phy.channel.tr38901.UMi`, :class:`~sionna.phy.channel.tr38901.UMa`, and :class:`~sionna.phy.channel.tr38901.RMa`. Example -------- >>> # Create antenna arrays >>> bs_array = PanelArray(num_rows_per_panel = 4, ... num_cols_per_panel = 4, ... polarization = 'dual', ... polarization_type = 'VH', ... antenna_pattern = '38.901', ... carrier_frequency = 3.5e9) >>> >>> ut_array = PanelArray(num_rows_per_panel = 1, ... num_cols_per_panel = 1, ... polarization = 'single', ... polarization_type = 'V', ... antenna_pattern = 'omni', ... carrier_frequency = 3.5e9) >>> # Create channel model >>> channel_model = UMi(carrier_frequency = 3.5e9, ... o2i_model = 'low', ... ut_array = ut_array, ... bs_array = bs_array, ... direction = 'uplink') >>> # Generate the topology >>> topology = gen_single_sector_topology(batch_size = 100, ... num_ut = 4, ... scenario = 'umi') >>> # Set the topology >>> ut_loc, bs_loc, ut_orientations, bs_orientations, ut_velocities, in_state = topology >>> channel_model.set_topology(ut_loc, ... bs_loc, ... ut_orientations, ... bs_orientations, ... ut_velocities, ... in_state) >>> channel_model.show_topology() .. image:: ../figures/drop_uts_in_sector_topology.png Input -------- batch_size : `int` Batch size num_ut : `int` Number of UTs to sample per batch example scenario : "uma" | "umi" | "rma" | "uma-calibration" | "umi-calibration" System level model scenario min_bs_ut_dist : `None` (default) | `tf.float` Minimum BS-UT distance [m] isd : `None` (default) | `tf.float` Inter-site distance [m] bs_height : `None` (default) | `tf.float` BS elevation [m] min_ut_height : `None` (default) | `tf.float` Minimum UT elevation [m] max_ut_height : `None` (default) | `tf.float` Maximum UT elevation [m] indoor_probability : `None` (default) | `tf.float` Probability of a UT to be indoor min_ut_velocity : `None` (default) | `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `None` (default) | `tf.float` Maximim UT velocity [m/s] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ ut_loc : [batch_size, num_ut, 3], `tf.float` UTs locations bs_loc : [batch_size, 1, 3], `tf.float` BS location. Set to (0,0,0) for all batch examples. ut_orientations : [batch_size, num_ut, 3], `tf.float` UTs orientations [radian] bs_orientations : [batch_size, 1, 3], `tf.float` BS orientations [radian]. Oriented towards the center of the sector. ut_velocities : [batch_size, num_ut, 3], `tf.float` UTs velocities [m/s] in_state : [batch_size, num_ut], `tf.float` Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. """ params = set_3gpp_scenario_parameters(scenario, min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision=precision) min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, \ indoor_probability, min_ut_velocity, max_ut_velocity = params if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Setting BS to (0,0,bs_height) bs_loc = tf.stack([tf.zeros([batch_size, 1], rdtype), tf.zeros([batch_size, 1], rdtype), tf.fill([batch_size, 1], bs_height)], axis=-1) # Setting the BS orientation such that it is downtilted towards the center # of the sector sector_center = (min_bs_ut_dist + 0.5*isd)*0.5 bs_downtilt = 0.5*PI - tf.math.atan(sector_center/bs_height) bs_yaw = tf.constant(PI/3.0, rdtype) bs_orientation = tf.stack([tf.fill([batch_size, 1], bs_yaw), tf.fill([batch_size, 1], bs_downtilt), tf.zeros([batch_size, 1], rdtype)], axis=-1) # Generating the UTs ut_topology = generate_uts_topology(batch_size, num_ut, 'sector', tf.zeros([2], rdtype), min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision) ut_loc, ut_orientations, ut_velocities, in_state = ut_topology return ut_loc, bs_loc, ut_orientations, bs_orientation, ut_velocities, \ in_state
[docs] def gen_single_sector_topology_interferers(batch_size, num_ut, num_interferer, scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability=None, min_ut_velocity=None, max_ut_velocity=None, precision=None): # pylint: disable=line-too-long r""" Generate a batch of topologies consisting of a single BS located at the origin, ``num_ut`` UTs randomly and uniformly dropped in a cell sector, and ``num_interferer`` interfering UTs randomly dropped in the adjacent cells The following picture shows how UTs are sampled .. figure:: ../figures/drop_uts_in_sector_interferers.png :align: center :scale: 30% UT velocity and orientation are drawn uniformly at random, whereas the BS points towards the center of the sector it serves. The drop configuration can be controlled through the optional parameters. Parameters set to `None` are set to valid values according to the chosen ``scenario`` (see [TR38901]_). The returned batch of topologies can be used as-is with the :meth:`set_topology` method of the system level models, i.e. :class:`~sionna.phy.channel.tr38901.UMi`, :class:`~sionna.phy.channel.tr38901.UMa`, and :class:`~sionna.phy.channel.tr38901.RMa`. In the returned ``ut_loc``, ``ut_orientations``, ``ut_velocities``, and ``in_state`` tensors, the first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfering UTs. Example -------- >>> # Create antenna arrays >>> bs_array = PanelArray(num_rows_per_panel = 4, ... num_cols_per_panel = 4, ... polarization = 'dual', ... polarization_type = 'VH', ... antenna_pattern = '38.901', ... carrier_frequency = 3.5e9) >>> >>> ut_array = PanelArray(num_rows_per_panel = 1, ... num_cols_per_panel = 1, ... polarization = 'single', ... polarization_type = 'V', ... antenna_pattern = 'omni', ... carrier_frequency = 3.5e9) >>> # Create channel model >>> channel_model = UMi(carrier_frequency = 3.5e9, ... o2i_model = 'low', ... ut_array = ut_array, ... bs_array = bs_array, ... direction = 'uplink') >>> # Generate the topology >>> topology = gen_single_sector_topology_interferers(batch_size = 100, ... num_ut = 4, ... num_interferer = 4, ... scenario = 'umi') >>> # Set the topology >>> ut_loc, bs_loc, ut_orientations, bs_orientations, ut_velocities, in_state = topology >>> channel_model.set_topology(ut_loc, ... bs_loc, ... ut_orientations, ... bs_orientations, ... ut_velocities, ... in_state) >>> channel_model.show_topology() .. image:: ../figures/drop_uts_in_sector_topology_inter.png Input -------- batch_size : `int` Batch size num_ut : `int` Number of UTs to sample per batch example num_interferer : `int` Number of interfeering UTs per batch example scenario : "uma" | "umi" | "rma" | "uma-calibration" | "umi-calibration" System level model scenario min_bs_ut_dist : `None` (default) | `tf.float` Minimum BS-UT distance [m] isd : `None` (default) | `tf.float` Inter-site distance [m] bs_height : `None` (default) | `tf.float` BS elevation [m] min_ut_height : `None` (default) | `tf.float` Minimum UT elevation [m] max_ut_height : `None` (default) | `tf.float` Maximum UT elevation [m] indoor_probability : `None` (default) | `tf.float` Probability of a UT to be indoor min_ut_velocity : `None` (default) | `tf.float` Minimum UT velocity [m/s] max_ut_velocity : `None` (default) | `tf.float` Maximim UT velocity [m/s] precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ ut_loc : [batch_size, num_ut, 3], `tf.float` UTs locations. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. bs_loc : [batch_size, 1, 3], `tf.float` BS location. Set to (0,0,0) for all batch examples. ut_orientations : [batch_size, num_ut, 3], `tf.float` UTs orientations [radian]. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. bs_orientations : [batch_size, 1, 3], `tf.float` BS orientation [radian]. Oriented towards the center of the sector. ut_velocities : [batch_size, num_ut, 3], `tf.float` UTs velocities [m/s]. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. in_state : [batch_size, num_ut], `tf.float` Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfering UTs. """ params = set_3gpp_scenario_parameters(scenario, min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision) min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, \ indoor_probability, min_ut_velocity, max_ut_velocity = params if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Setting BS to (0,0,bs_height) bs_loc = tf.stack([tf.zeros([batch_size, 1], rdtype), tf.zeros([batch_size, 1], rdtype), tf.fill([batch_size, 1], bs_height)], axis=-1) # Setting the BS orientation such that it is downtilted towards the center # of the sector sector_center = (min_bs_ut_dist + 0.5*isd)*0.5 bs_downtilt = 0.5*PI - tf.math.atan(sector_center/bs_height) bs_yaw = tf.constant(PI/3.0, rdtype) bs_orientation = tf.stack([tf.fill([batch_size, 1], bs_yaw), tf.fill([batch_size, 1], bs_downtilt), tf.zeros([batch_size, 1], rdtype)], axis=-1) # Generating the UTs located in the UTs served by the BS ut_topology = generate_uts_topology(batch_size, num_ut, 'sector', tf.zeros([2], rdtype), min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision) ut_loc, ut_orientations, ut_velocities, in_state = ut_topology # Generating the UTs located in the adjacent cells # Users are randomly dropped in one of the two adjacent cells inter_cell_center = tf.stack([[0.0, isd], [isd*tf.math.cos(PI/6.0), isd*tf.math.sin(PI/6.0)]], axis=0) cell_index = config.tf_rng.uniform(shape=[batch_size, num_interferer], minval=0, maxval=2, dtype=tf.int32) inter_cells = tf.gather(inter_cell_center, cell_index) inter_topology = generate_uts_topology(batch_size, num_interferer, 'cell', inter_cells, min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, precision) inter_loc, inter_orientations, inter_velocities, inter_in_state \ = inter_topology ut_loc = tf.concat([ut_loc, inter_loc], axis=1) ut_orientations = tf.concat([ut_orientations, inter_orientations], axis=1) ut_velocities = tf.concat([ut_velocities, inter_velocities], axis=1) in_state = tf.concat([in_state, inter_in_state], axis=1) return ut_loc, bs_loc, ut_orientations, bs_orientation, ut_velocities, \ in_state
[docs] def exp_corr_mat(a, n, precision=None): r"""Generates exponential correlation matrices This function computes for every element :math:`a` of a complex-valued tensor :math:`\mathbf{a}` the corresponding :math:`n\times n` exponential correlation matrix :math:`\mathbf{R}(a,n)`, defined as (Eq. 1, [MAL2018]_): .. math:: \mathbf{R}(a,n)_{i,j} = \begin{cases} 1 & \text{if } i=j\\ a^{i-j} & \text{if } i>j\\ (a^\star)^{j-i} & \text{if } j<i, j=1,\dots,n\\ \end{cases} where :math:`|a|<1` and :math:`\mathbf{R}\in\mathbb{C}^{n\times n}`. Input ----- a : [n_0, ..., n_k], `tf.complex` Parameters :math:`a` for the exponential correlation matrices n : `int` Number of dimensions of the output correlation matrices precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ R : [n_0, ..., n_k, n, n], `tf.complex` Correlation matrices """ if precision is None: cdtype = config.tf_cdtype else: cdtype = dtypes[precision]["tf"]["cdtype"] # Cast to desired output dtype and expand last dimension for broadcasting a = tf.cast(a, dtype=cdtype) a = tf.expand_dims(a, -1) # Check that a is valid msg = "The absolute value of the elements of `a` must be smaller than one" tf.debugging.assert_less(tf.abs(a), tf.cast(1, a.dtype.real_dtype), msg) # Vector of exponents, adapt dtype and dimensions for broadcasting exp = tf.range(0, n) exp = tf.cast(exp, dtype=cdtype) exp = expand_to_rank(exp, tf.rank(a), 0) # First column of R col = tf.math.pow(a, exp) # For a=0, one needs to remove the resulting nans due to 0**0=nan cond = tf.math.is_nan(tf.math.real(col)) col = tf.where(cond, tf.ones_like(col), col) # First row of R (equal to complex-conjugate of the first column) row = tf.math.conj(col) # Create Toeplitz operator operator = tf.linalg.LinearOperatorToeplitz(col, row) # Generate dense tensor from operator r = operator.to_dense() return r
[docs] def one_ring_corr_mat(phi_deg, num_ant, d_h=0.5, sigma_phi_deg=15, precision=None): r"""Generates covariance matrices from the one-ring model This function generates approximate covariance matrices for the so-called `one-ring` model (Eq. 2.24) [BHS2017]_. A uniform linear array (ULA) with uniform antenna spacing is assumed. The elements of the covariance matrices are computed as: .. math:: \mathbf{R}_{\ell,m} = \exp\left( j2\pi d_\text{H} (\ell -m)\sin(\varphi) \right) \exp\left( -\frac{\sigma_\varphi^2}{2} \left( 2\pi d_\text{H}(\ell -m)\cos(\varphi) \right)^2 \right) for :math:`\ell,m = 1,\dots, M`, where :math:`M` is the number of antennas, :math:`\varphi` is the angle of arrival, :math:`d_\text{H}` is the antenna spacing in multiples of the wavelength, and :math:`\sigma^2_\varphi` is the angular standard deviation. Input ----- phi_deg : [n_0, ..., n_k], `tf.float` Azimuth angles (deg) of arrival num_ant : `int` Number of antennas d_h : `float`, (default 0.5) Antenna spacing in multiples of the wavelength sigma_phi_deg : `float`, (default 15) Angular standard deviation (deg). Values greater than 15 should not be used as the approximation becomes invalid. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Output ------ R : [n_0, ..., n_k, num_ant, nun_ant], `tf.complex` Covariance matrices """ if precision is None: rdtype = config.tf_rdtype cdtype = config.tf_cdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] cdtype = dtypes[precision]["tf"]["cdtype"] if sigma_phi_deg > 15: warnings.warn("sigma_phi_deg should be smaller than 15.") # Convert all inputs to radians phi_deg = tf.cast(phi_deg, dtype=rdtype) sigma_phi_deg = tf.cast(sigma_phi_deg, dtype=rdtype) phi = deg_2_rad(phi_deg) sigma_phi = deg_2_rad(sigma_phi_deg) # Add dimensions for broadcasting phi = tf.expand_dims(phi, -1) sigma_phi = tf.expand_dims(sigma_phi, -1) # Compute first column c = tf.constant(2*PI*d_h, dtype=rdtype) d = c*tf.range(0, num_ant, dtype=rdtype) d = expand_to_rank(d, tf.rank(phi), 0) a = tf.complex(tf.cast(0, dtype=rdtype), d*tf.sin(phi)) exp_a = tf.exp(a) # First exponential term b = -tf.cast(0.5, dtype=rdtype)*(sigma_phi*d*tf.cos(phi))**2 exp_b = tf.cast(tf.exp(b), dtype=cdtype) # Second exponetial term col = exp_a*exp_b # First column # First row is just the complex conjugate of first column row = tf.math.conj(col) # Create Toeplitz operator operator = tf.linalg.LinearOperatorToeplitz(col, row) # Generate dense tensor from operator r = operator.to_dense() return r