Source code for sionna.phy.ofdm.detection

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0#
"""Class definition and functions related to OFDM channel equalization"""

import tensorflow as tf

from sionna.phy import Block
from sionna.phy.utils import flatten_dims, split_dim, flatten_last_dims, \
                             expand_to_rank
from sionna.phy.ofdm import RemoveNulledSubcarriers
from sionna.phy.mimo import MaximumLikelihoodDetector \
                         as MaximumLikelihoodDetector_
from sionna.phy.mimo import LinearDetector as LinearDetector_
from sionna.phy.mimo import KBestDetector as KBestDetector_
from sionna.phy.mimo import EPDetector as EPDetector_
from sionna.phy.mimo import MMSEPICDetector as MMSEPICDetector_
from sionna.phy.mapping import Constellation

[docs] class OFDMDetector(Block): # pylint: disable=line-too-long r""" Block that wraps a MIMO detector for use with the OFDM waveform The parameter ``detector`` is a callable (e.g., a function) that implements a MIMO detection algorithm for arbitrary batch dimensions. This class pre-processes the received resource grid ``y`` and channel estimate ``h_hat``, and computes for each receiver the noise-plus-interference covariance matrix according to the OFDM and stream configuration provided by the ``resource_grid`` and ``stream_management``, which also accounts for the channel estimation error variance ``err_var``. These quantities serve as input to the detection algorithm that is implemented by ``detector``. Both detection of symbols or bits with either soft- or hard-decisions are supported. Note ----- The callable ``detector`` must take as input a tuple :math:`(\mathbf{y}, \mathbf{h}, \mathbf{s})` such that: * **y** ([...,num_rx_ant], tf.complex) -- 1+D tensor containing the received signals. * **h** ([...,num_rx_ant,num_streams_per_rx], tf.complex) -- 2+D tensor containing the channel matrices. * **s** ([...,num_rx_ant,num_rx_ant], tf.complex) -- 2+D tensor containing the noise-plus-interference covariance matrices. It must generate one of following outputs depending on the value of ``output``: * **b_hat** ([..., num_streams_per_rx, num_bits_per_symbol], tf.float) -- LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. * **x_hat** ([..., num_streams_per_rx, num_points], tf.float) or ([..., num_streams_per_rx], tf.int) -- Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. Parameters ---------- detector : `Callable` Callable object (e.g., a function) that implements a MIMO detection algorithm for arbitrary batch dimensions. Either one of the existing detectors, e.g., :class:`~sionna.phy.mimo.LinearDetector`, :class:`~sionna.phy.mimo.MaximumLikelihoodDetector`, or :class:`~sionna.phy.mimo.KBestDetector` can be used, or a custom detector callable provided that has the same input/output specification. output : "bit" | "symbol" Type of output, either bits or symbols resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"` : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, detector, output, resource_grid, stream_management, precision=None, **kwargs): super().__init__(precision=precision, **kwargs) self._detector = detector self._resource_grid = resource_grid self._stream_management = stream_management self._removed_nulled_scs = RemoveNulledSubcarriers( self._resource_grid, precision=self.precision) self._output = output # Precompute indices to extract data symbols mask = resource_grid.pilot_pattern.mask num_data_symbols = resource_grid.pilot_pattern.num_data_symbols data_ind = tf.argsort(flatten_last_dims(mask), direction="ASCENDING") self._data_ind = data_ind[...,:num_data_symbols] def _preprocess_inputs(self, y, h_hat, err_var, no): """Pro-process the received signal and compute the noise-plus-interference covariance matrix""" # Remove nulled subcarriers from y (guards, dc). New shape: # [batch_size, num_rx, num_rx_ant, ... # ..., num_ofdm_symbols, num_effective_subcarriers] y_eff = self._removed_nulled_scs(y) #################################################### ### Prepare the observation y for MIMO detection ### #################################################### # Transpose y_eff to put num_rx_ant last. New shape: # [batch_size, num_rx, num_ofdm_symbols,... # ..., num_effective_subcarriers, num_rx_ant] y_dt = tf.transpose(y_eff, [0, 1, 3, 4, 2]) y_dt = tf.cast(y_dt, self.cdtype) # Transpose y_eff to put num_rx_ant last. New shape: # [batch_size, num_rx, num_ofdm_symbols,... # ..., num_effective_subcarriers, num_rx_ant] y_dt = tf.transpose(y_eff, [0, 1, 3, 4, 2]) y_dt = tf.cast(y_dt, self.cdtype) ############################################## ### Prepare the err_var for MIMO detection ### ############################################## # New shape is: # [batch_size, num_rx, num_ofdm_symbols,... # ..., num_effective_subcarriers, num_rx_ant, num_tx*num_streams] err_var_dt = tf.broadcast_to(err_var, tf.shape(h_hat)) err_var_dt = tf.transpose(err_var_dt, [0, 1, 5, 6, 2, 3, 4]) err_var_dt = flatten_last_dims(err_var_dt, 2) err_var_dt = tf.cast(err_var_dt, self.cdtype) ############################### ### Construct MIMO channels ### ############################### # Reshape h_hat for the construction of desired/interfering channels: # [num_rx, num_tx, num_streams_per_tx, batch_size, num_rx_ant, ,... # ..., num_ofdm_symbols, num_effective_subcarriers] perm = [1, 3, 4, 0, 2, 5, 6] h_dt = tf.transpose(h_hat, perm) # Flatten first tthree dimensions: # [num_rx*num_tx*num_streams_per_tx, batch_size, num_rx_ant, ... # ..., num_ofdm_symbols, num_effective_subcarriers] h_dt = flatten_dims(h_dt, 3, 0) # Gather desired and undesired channels ind_desired = self._stream_management.detection_desired_ind ind_undesired = self._stream_management.detection_undesired_ind h_dt_desired = tf.gather(h_dt, ind_desired, axis=0) h_dt_undesired = tf.gather(h_dt, ind_undesired, axis=0) # Split first dimension to separate RX and TX: # [num_rx, num_streams_per_rx, batch_size, num_rx_ant, ... # ..., num_ofdm_symbols, num_effective_subcarriers] h_dt_desired = split_dim(h_dt_desired, [self._stream_management.num_rx, self._stream_management.num_streams_per_rx], 0) h_dt_undesired = split_dim(h_dt_undesired, [self._stream_management.num_rx, -1], 0) # Permutate dims to # [batch_size, num_rx, num_ofdm_symbols, num_effective_subcarriers,.. # ..., num_rx_ant, num_streams_per_rx(num_Interfering_streams_per_rx)] perm = [2, 0, 4, 5, 3, 1] h_dt_desired = tf.transpose(h_dt_desired, perm) h_dt_desired = tf.cast(h_dt_desired, self.cdtype) h_dt_undesired = tf.transpose(h_dt_undesired, perm) ################################## ### Prepare the noise variance ### ################################## # no is first broadcast to [batch_size, num_rx, num_rx_ant] # then the rank is expanded to that of y # then it is transposed like y to the final shape # [batch_size, num_rx, num_ofdm_symbols,... # ..., num_effective_subcarriers, num_rx_ant] no_dt = expand_to_rank(no, 3, -1) no_dt = tf.broadcast_to(no_dt, tf.shape(y)[:3]) no_dt = expand_to_rank(no_dt, tf.rank(y), -1) no_dt = tf.transpose(no_dt, [0,1,3,4,2]) no_dt = tf.cast(no_dt, self.cdtype) ################################################## ### Compute the interference covariance matrix ### ################################################## # Covariance of undesired transmitters s_inf = tf.matmul(h_dt_undesired, h_dt_undesired, adjoint_b=True) #Thermal noise s_no = tf.linalg.diag(no_dt) # Channel estimation errors # As we have only error variance information for each element, # we simply sum them across transmitters and build a # diagonal covariance matrix from this s_csi = tf.linalg.diag(tf.reduce_sum(err_var_dt, -1)) # Final covariance matrix s = s_inf + s_no + s_csi s = tf.cast(s, self.cdtype) return y_dt, h_dt_desired, s def _extract_datasymbols(self, z): """Extract data symbols for all detected TX""" # If output is symbols with hard decision, the rank is 5 and not 6 as # for other cases. The tensor rank is therefore expanded with one extra # dimension, which is removed later. rank_extanded = len(z.shape) < 6 z = expand_to_rank(z, 6, -1) # Transpose tensor to shape # [num_rx, num_streams_per_rx, num_ofdm_symbols, # num_effective_subcarriers, num_bits_per_symbol or num_points, # batch_size] z = tf.transpose(z, [1, 4, 2, 3, 5, 0]) # Merge num_rx amd num_streams_per_rx # [num_rx * num_streams_per_rx, num_ofdm_symbols, # num_effective_subcarriers, num_bits_per_symbol or num_points, # batch_size] z = flatten_dims(z, 2, 0) # Put first dimension into the right ordering stream_ind = self._stream_management.stream_ind z = tf.gather(z, stream_ind, axis=0) # Reshape first dimensions to [num_tx, num_streams] so that # we can compare to the way the streams were created. # [num_tx, num_streams, num_ofdm_symbols, num_effective_subcarriers, # num_bits_per_symbol or num_points, batch_size] num_streams = self._stream_management.num_streams_per_tx num_tx = self._stream_management.num_tx z = split_dim(z, [num_tx, num_streams], 0) # Flatten resource grid dimensions # [num_tx, num_streams, num_ofdm_symbols*num_effective_subcarrier, # num_bits_per_symbol or num_points, batch_size] z = flatten_dims(z, 2, 2) # Gather data symbols # [num_tx, num_streams, num_data_symbols, # num_bits_per_symbol or num_points, batch_size] z = tf.gather(z, self._data_ind, batch_dims=2, axis=2) # Put batch_dim first # [batch_size, num_tx, num_streams, # num_data_symbols, num_bits_per_symbol or num_points] z = tf.transpose(z, [4, 0, 1, 2, 3]) # Reshape LLRs to # [batch_size, num_tx, num_streams, # n = num_data_symbols*num_bits_per_symbol] # if output is LLRs on bits if self._output == 'bit': z = flatten_dims(z, 2, 3) # Remove dummy dimension if output is symbols with hard decision if rank_extanded: z = tf.squeeze(z, axis=-1) return z def call(self, y, h_hat, err_var, no): # y has shape: # [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size] # h_hat has shape: # [batch_size, num_rx, num_rx_ant, num_tx, num_streams,... # ..., num_ofdm_symbols, num_effective_subcarriers] # err_var has a shape that is broadcastable to h_hat # no has shape [batch_size, num_rx, num_rx_ant] # or just the first n dimensions of this ################################ ### Pre-process the inputs ################################ y_dt, h_dt_desired, s = self._preprocess_inputs(y, h_hat, err_var, no) ################################# ### Detection ################################# z = self._detector(y_dt, h_dt_desired, s) ############################################## ### Extract data symbols for all detected TX ############################################## z = self._extract_datasymbols(z) return z
[docs] class OFDMDetectorWithPrior(OFDMDetector): # pylint: disable=line-too-long r""" Block that wraps a MIMO detector that assumes prior knowledge of the bits or constellation points is available, for use with the OFDM waveform The parameter ``detector`` is a callable (e.g., a function) that implements a MIMO detection algorithm with prior for arbitrary batch dimensions. This class pre-processes the received resource grid ``y``, channel estimate ``h_hat``, and the prior information ``prior``, and computes for each receiver the noise-plus-interference covariance matrix according to the OFDM and stream configuration provided by the ``resource_grid`` and ``stream_management``, which also accounts for the channel estimation error variance ``err_var``. These quantities serve as input to the detection algorithm that is implemented by ``detector``. Both detection of symbols or bits with either soft- or hard-decisions are supported. Note ----- The callable ``detector`` must take as input a tuple :math:`(\mathbf{y}, \mathbf{h}, \mathbf{prior}, \mathbf{s})` such that: * **y** ([...,num_rx_ant], tf.complex) -- 1+D tensor containing the received signals. * **h** ([...,num_rx_ant,num_streams_per_rx], tf.complex) -- 2+D tensor containing the channel matrices. * **prior** ([...,num_streams_per_rx,num_bits_per_symbol] or [...,num_streams_per_rx,num_points], tf.float) -- Prior for the transmitted signals. If ``output`` equals "bit", then LLRs for the transmitted bits are expected. If ``output`` equals "symbol", then logits for the transmitted constellation points are expected. * **s** ([...,num_rx_ant,num_rx_ant], tf.complex) -- 2+D tensor containing the noise-plus-interference covariance matrices. It must generate one of the following outputs depending on the value of ``output``: * **b_hat** ([..., num_streams_per_rx, num_bits_per_symbol], tf.float) -- LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. * **x_hat** ([..., num_streams_per_rx, num_points], tf.float) or ([..., num_streams_per_rx], tf.int) -- Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. Parameters ---------- detector : `Callable` Callable object (e.g., a function) that implements a MIMO detection algorithm with prior for arbitrary batch dimensions. Either the existing detector :class:`~sionna.phy.mimo.MaximumLikelihoodDetectorWithPrior` can be used, or a custom detector callable provided that has the same input/output specification. output : "bit" | "symbol" Type of output, either bits or symbols resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters prior : [batch_size, num_tx, num_streams, num_data_symbols x num_bits_per_symbol] or [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` Prior of the transmitted signals. If ``output`` equals "bit", LLRs of the transmitted bits are expected. If ``output`` equals "symbol", logits of the transmitted constellation points are expected. err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, detector, output, resource_grid, stream_management, constellation_type=None, num_bits_per_symbol=None, constellation=None, precision=None, **kwargs): super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, precision=precision, **kwargs) # Constellation object self._constellation = Constellation.check_or_create( constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, precision=precision) # Precompute indices to map priors to a resource grid rg_type = resource_grid.build_type_grid() # The nulled subcarriers (nulled DC and guard carriers) are removed to # get the correct indices of data-carrying resource elements. remove_nulled_sc = RemoveNulledSubcarriers(resource_grid) self._data_ind_scatter = tf.where(remove_nulled_sc(rg_type)==0) # Overwrite the call() method of baseclass `BaseDetector` def call(self, y, h_hat, prior, err_var, no): # y has shape: # [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size] # h_hat has shape: # [batch_size, num_rx, num_rx_ant, num_tx, num_streams,... # ..., num_ofdm_symbols, num_effective_subcarriers] # prior has shape # [batch_size, num_tx, num_streams,... # ... num_data_symbols x num_bits_per_symbol] # or [batch_size, num_tx, num_streams, num_data_symbols, num_points] # err_var has a shape that is broadcastable to h_hat # no has shape [batch_size, num_rx, num_rx_ant] # or just the first n dimensions of this ################################ ### Pre-process the inputs ################################ y_dt, h_dt_desired, s = self._preprocess_inputs(y, h_hat, err_var, no) ######################### ### Prepare the prior ### ######################### # [batch_size, num_tx, num_streams_per_tx, num_data_symbols, # ... num_bits_per_symbol/num_points] if self._output == 'bit': prior = split_dim( prior, [ self._resource_grid.num_data_symbols, self._constellation.num_bits_per_symbol], 3) # Create a zero template for the prior # [num_tx, num_streams_per_tx, num_ofdm_symbols,... # ... num_effective_subcarriers, num_bits_per_symbol/num_points, # ... batch_size] template = tf.zeros([self._resource_grid.num_tx, self._resource_grid.num_streams_per_tx, self._resource_grid.num_ofdm_symbols, self._resource_grid.num_effective_subcarriers, tf.shape(prior)[-1], tf.shape(prior)[0] ], self.rdtype) # [num_tx, num_streams_per_tx, num_data_symbols, # ... num_bits_per_symbol/num_points, batch_size] prior = tf.transpose(prior, [1, 2, 3, 4, 0]) # [num_tx, num_streams_per_tx, num_ofdm_symbols,... # ... num_effective_subcarriers, num_bits_per_symbol/num_points,... # ... batch_size] prior = flatten_dims(prior, 3, 0) prior = tf.tensor_scatter_nd_update(template, self._data_ind_scatter, prior) # [batch_size, num_ofdm_symbols, num_effective_subcarriers,... # num_tx*num_streams_per_tx, num_bits_per_symbol/num_points] prior = tf.transpose(prior, [5, 2, 3, 0, 1, 4]) prior = flatten_dims(prior, 2, 3) # Add the receive antenna dimension for broadcasting # [batch_size, num_rx, num_ofdm_symbols, num_effective_subcarriers,... # num_tx*num_streams_per_tx, num_bits_per_symbol/num_points] prior = tf.tile(tf.expand_dims(prior, axis=1), [1, tf.shape(y)[1], 1, 1, 1, 1]) ################################# ### Maximum-likelihood detection ################################# z = self._detector(y_dt, h_dt_desired, s, prior) ############################################## ### Extract data symbols for all detected TX ############################################## z = self._extract_datasymbols(z) return z
[docs] class MaximumLikelihoodDetector(OFDMDetector): # pylint: disable=line-too-long r""" Maximum-likelihood (ML) detection for OFDM MIMO transmissions This block implements maximum-likelihood (ML) detection for OFDM MIMO transmissions. Both ML detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.MaximumLikelihoodDetector`. Parameters ---------- output : "bit" | "symbol" Type of output, either bits or symbols demapping_method : "app" | "maxlog"] Demapping method used resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN noise Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, output, demapping_method, resource_grid, stream_management, constellation_type=None, num_bits_per_symbol=None, constellation=None, hard_out=False, precision=None, **kwargs): # Instantiate the maximum-likelihood detector detector = MaximumLikelihoodDetector_(output=output, demapping_method=demapping_method, num_streams = stream_management.num_streams_per_rx, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, hard_out=hard_out, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, precision=precision, **kwargs)
[docs] class MaximumLikelihoodDetectorWithPrior(OFDMDetectorWithPrior): # pylint: disable=line-too-long r""" Maximum-likelihood (ML) detection for OFDM MIMO transmissions, assuming prior knowledge of the bits or constellation points is available This block implements maximum-likelihood (ML) detection for OFDM MIMO transmissions assuming prior knowledge on the transmitted data is available. Both ML detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.MaximumLikelihoodDetectorWithPrior`. Parameters ---------- output : "bit" | "symbol" Type of output, either bits or symbols demapping_method : "app" | "maxlog"] Demapping method used resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters prior : [batch_size, num_tx, num_streams, num_data_symbols x num_bits_per_symbol] or [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` Prior of the transmitted signals. If ``output`` equals "bit", LLRs of the transmitted bits are expected. If ``output`` equals "symbol", logits of the transmitted constellation points are expected. err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN noise Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, output, demapping_method, resource_grid, stream_management, constellation_type=None, num_bits_per_symbol=None, constellation=None, hard_out=False, precision=None, **kwargs): # Instantiate the maximum-likelihood detector detector = MaximumLikelihoodDetector_(output=output, demapping_method=demapping_method, num_streams = stream_management.num_streams_per_rx, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, hard_out=hard_out, with_prior=True, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, precision=precision, **kwargs)
[docs] class LinearDetector(OFDMDetector): # pylint: disable=line-too-long r""" This block wraps a MIMO linear equalizer and a :class:`~sionna.phy.mapping.Demapper` for use with the OFDM waveform Both detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.LinearDetector`. Parameters ---------- equalizer : "lmmse" | "zf" | "mf" | equalizer function Equalizer to be used. Either one of the existing equalizers, e.g., :func:`~sionna.phy.mimo.lmmse_equalizer`, :func:`~sionna.phy.mimo.zf_equalizer`, or :func:`~sionna.phy.mimo.mf_equalizer` can be used, or a custom equalizer function provided that has the same input/output specification. output : "bit" | "symbol" Type of output, either bits or symbols demapping_method : "app" | "maxlog"] Demapping method used resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, equalizer, output, demapping_method, resource_grid, stream_management, constellation_type=None, num_bits_per_symbol=None, constellation=None, hard_out=False, precision=None, **kwargs): # Instantiate the linear detector detector = LinearDetector_(equalizer=equalizer, output=output, demapping_method=demapping_method, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, hard_out=hard_out, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, precision=precision, **kwargs)
[docs] class KBestDetector(OFDMDetector): # pylint: disable=line-too-long r""" This block wraps the MIMO K-Best detector for use with the OFDM waveform Both detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.KBestDetector`. Parameters ---------- output : "bit" | "symbol" Type of output, either bits or symbols num_streams : `int`` Number of transmitted streams k : `int` Number of paths to keep. Cannot be larger than the number of constellation points to the power of the number of streams. resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. use_real_rep : `bool`, (default `False`) If `True`, the detector use the real-valued equivalent representation of the channel. Note that this only works with a QAM constellation. list2llr: `None` (default) | :class:`~sionna.phy.mimo.List2LLR` The function to be used to compute LLRs from a list of candidate solutions. If `None`, the default solution :class:`~sionna.phy.mimo.List2LLRSimple` is used. precision : str, `None` (default) | 'single' | 'double' Precision used for internal calculations and outputs. If set to `None`, :py:attr:`~sionna.phy.config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, output, num_streams, k, resource_grid, stream_management, constellation_type=None, num_bits_per_symbol=None, constellation=None, hard_out=False, use_real_rep=False, list2llr=None, precision=None, **kwargs): # Instantiate the K-Best detector detector = KBestDetector_(output=output, num_streams=num_streams, k=k, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, hard_out=hard_out, use_real_rep=use_real_rep, list2llr=list2llr, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, precision=precision, **kwargs)
[docs] class EPDetector(OFDMDetector): # pylint: disable=line-too-long r""" This block wraps the MIMO EP detector for use with the OFDM waveform Both detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.EPDetector`. Parameters ---------- output : "bit" | "symbol" Type of output, either bits or symbols resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. l : `int`, (default 10) Number of iterations beta : `float`, (default 0.9) Parameter :math:`\beta\in[0,1]` for update smoothing precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, output, resource_grid, stream_management, num_bits_per_symbol=None, hard_out=False, l=10, beta=0.9, precision=None, **kwargs): # Instantiate the EP detector detector = EPDetector_(output=output, num_bits_per_symbol=num_bits_per_symbol, hard_out=hard_out, l=l, beta=beta, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, precision=precision, **kwargs)
[docs] class MMSEPICDetector(OFDMDetectorWithPrior): # pylint: disable=line-too-long r""" This block wraps the MIMO MMSE PIC detector for use with the OFDM waveform Both detection of symbols or bits with either soft- or hard-decisions are supported. The OFDM and stream configuration are provided by a :class:`~sionna.phy.ofdm.ResourceGrid` and :class:`~sionna.phy.mimo.StreamManagement` instance, respectively. The actual detector is an instance of :class:`~sionna.phy.mimo.MMSEPICDetector`. Parameters ---------- output : "bit" | "symbol" Type of output, either bits or symbols demapping_method : "app" | "maxlog"] Demapping method used resource_grid : :class:`~sionna.phy.ofdm.ResourceGrid` ResourceGrid to be used stream_management : :class:`~sionna.phy.mimo.StreamManagement` StreamManagement to be used num_iter : `int`, (default 1) Number of MMSE PIC iterations constellation_type : `None` (default) | "qam" | "pam" | "custom" For "custom", an instance of :class:`~sionna.phy.mapping.Constellation` must be provided. num_bits_per_symbol : `int` Number of bits per constellation symbol, e.g., 4 for QAM16. Only required for ``constellation_type`` in ["qam", "pam"]. constellation : `None` (default) | :class:`~sionna.phy.mapping.Constellation` If `None`, ``constellation_type`` and ``num_bits_per_symbol`` must be provided. hard_out : `bool`, (default `False`) If `True`, the detector computes hard-decided bit values or constellation point indices instead of soft-values. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, :attr:`~sionna.phy.config.Config.precision` is used. Input ------ y : [batch_size, num_rx, num_rx_ant, num_ofdm_symbols, fft_size], `tf.complex` Received OFDM resource grid after cyclic prefix removal and FFT h_hat : [batch_size, num_rx, num_rx_ant, num_tx, num_streams_per_tx, num_ofdm_symbols, num_effective_subcarriers], `tf.complex` Channel estimates for all streams from all transmitters prior : [batch_size, num_tx, num_streams, num_data_symbols x num_bits_per_symbol] or [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` Prior of the transmitted signals. If ``output`` equals "bit", LLRs of the transmitted bits are expected. If ``output`` equals "symbol", logits of the transmitted constellation points are expected. err_var : [Broadcastable to shape of ``h_hat``], `tf.float` Variance of the channel estimation error no : [batch_size, num_rx, num_rx_ant] (or only the first n dims), `tf.float` Variance of the AWGN Output ------ One of: : [batch_size, num_tx, num_streams, num_data_symbols*num_bits_per_symbol], `tf.float` LLRs or hard-decisions for every bit of every stream, if ``output`` equals `"bit"`. : [batch_size, num_tx, num_streams, num_data_symbols, num_points], `tf.float` or [batch_size, num_tx, num_streams, num_data_symbols], `tf.int32` Logits or hard-decisions for constellation symbols for every stream, if ``output`` equals `"symbol"`. Hard-decisions correspond to the symbol indices. """ def __init__(self, output, demapping_method, resource_grid, stream_management, num_iter=1, constellation_type=None, num_bits_per_symbol=None, constellation=None, hard_out=False, precision=None, **kwargs): # Instantiate the EP detector detector = MMSEPICDetector_(output=output, demapping_method=demapping_method, num_iter=num_iter, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, hard_out=hard_out, precision=precision, **kwargs) super().__init__(detector=detector, output=output, resource_grid=resource_grid, stream_management=stream_management, constellation_type=constellation_type, num_bits_per_symbol=num_bits_per_symbol, constellation=constellation, precision=precision, **kwargs)