NVBIO
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
trees.c
Go to the documentation of this file.
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2012 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  * ALGORITHM
9  *
10  * The "deflation" process uses several Huffman trees. The more
11  * common source values are represented by shorter bit sequences.
12  *
13  * Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values). The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  * REFERENCES
20  *
21  * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  * Storer, James A.
25  * Data Compression: Methods and Theory, pp. 49-50.
26  * Computer Science Press, 1988. ISBN 0-7167-8156-5.
27  *
28  * Sedgewick, R.
29  * Algorithms, p290.
30  * Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef DEBUG
40 # include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6 16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10 17
57 /* repeat a zero length 3-10 times (3 bits of repeat count) */
58 
59 #define REPZ_11_138 18
60 /* repeat a zero length 11-138 times (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63  = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66  = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69  = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
72  = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 # include "trees.h"
115 #endif /* GEN_TREES_H */
116 
117 struct static_tree_desc_s {
118  const ct_data *static_tree; /* static tree or NULL */
119  const intf *extra_bits; /* extra bits for each code or NULL */
120  int extra_base; /* base index for extra_bits */
121  int elems; /* max number of elements in the tree */
122  int max_length; /* max bit length for the codes */
123 };
124 
127 
130 
132 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
133 
134 /* ===========================================================================
135  * Local (static) routines in this file.
136  */
137 
138 local void tr_static_init OF((void));
139 local void init_block OF((deflate_state *s));
140 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
141 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
142 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
143 local void build_tree OF((deflate_state *s, tree_desc *desc));
144 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
145 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
148  int blcodes));
149 local void compress_block OF((deflate_state *s, ct_data *ltree,
150  ct_data *dtree));
152 local unsigned bi_reverse OF((unsigned value, int length));
153 local void bi_windup OF((deflate_state *s));
154 local void bi_flush OF((deflate_state *s));
155 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
156  int header));
157 
158 #ifdef GEN_TREES_H
159 local void gen_trees_header OF((void));
160 #endif
161 
162 #ifndef DEBUG
163 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164  /* Send a code of the given tree. c and tree must not have side effects */
165 
166 #else /* DEBUG */
167 # define send_code(s, c, tree) \
168  { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169  send_bits(s, tree[c].Code, tree[c].Len); }
170 #endif
171 
172 /* ===========================================================================
173  * Output a short LSB first on the stream.
174  * IN assertion: there is enough room in pendingBuf.
175  */
176 #define put_short(s, w) { \
177  put_byte(s, (uch)((w) & 0xff)); \
178  put_byte(s, (uch)((ush)(w) >> 8)); \
179 }
180 
181 /* ===========================================================================
182  * Send a value on a given number of bits.
183  * IN assertion: length <= 16 and value fits in length bits.
184  */
185 #ifdef DEBUG
186 local void send_bits OF((deflate_state *s, int value, int length));
187 
188 local void send_bits(s, value, length)
189  deflate_state *s;
190  int value; /* value to send */
191  int length; /* number of bits */
192 {
193  Tracevv((stderr," l %2d v %4x ", length, value));
194  Assert(length > 0 && length <= 15, "invalid length");
195  s->bits_sent += (ulg)length;
196 
197  /* If not enough room in bi_buf, use (valid) bits from bi_buf and
198  * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
199  * unused bits in value.
200  */
201  if (s->bi_valid > (int)Buf_size - length) {
202  s->bi_buf |= (ush)value << s->bi_valid;
203  put_short(s, s->bi_buf);
204  s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
205  s->bi_valid += length - Buf_size;
206  } else {
207  s->bi_buf |= (ush)value << s->bi_valid;
208  s->bi_valid += length;
209  }
210 }
211 #else /* !DEBUG */
212 
213 #define send_bits(s, value, length) \
214 { int len = length;\
215  if (s->bi_valid > (int)Buf_size - len) {\
216  int val = value;\
217  s->bi_buf |= (ush)val << s->bi_valid;\
218  put_short(s, s->bi_buf);\
219  s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
220  s->bi_valid += len - Buf_size;\
221  } else {\
222  s->bi_buf |= (ush)(value) << s->bi_valid;\
223  s->bi_valid += len;\
224  }\
225 }
226 #endif /* DEBUG */
227 
228 
229 /* the arguments must not have side effects */
230 
231 /* ===========================================================================
232  * Initialize the various 'constant' tables.
233  */
235 {
236 #if defined(GEN_TREES_H) || !defined(STDC)
237  static int static_init_done = 0;
238  int n; /* iterates over tree elements */
239  int bits; /* bit counter */
240  int length; /* length value */
241  int code; /* code value */
242  int dist; /* distance index */
243  ush bl_count[MAX_BITS+1];
244  /* number of codes at each bit length for an optimal tree */
245 
246  if (static_init_done) return;
247 
248  /* For some embedded targets, global variables are not initialized: */
249 #ifdef NO_INIT_GLOBAL_POINTERS
255 #endif
256 
257  /* Initialize the mapping length (0..255) -> length code (0..28) */
258  length = 0;
259  for (code = 0; code < LENGTH_CODES-1; code++) {
260  base_length[code] = length;
261  for (n = 0; n < (1<<extra_lbits[code]); n++) {
262  _length_code[length++] = (uch)code;
263  }
264  }
265  Assert (length == 256, "tr_static_init: length != 256");
266  /* Note that the length 255 (match length 258) can be represented
267  * in two different ways: code 284 + 5 bits or code 285, so we
268  * overwrite length_code[255] to use the best encoding:
269  */
270  _length_code[length-1] = (uch)code;
271 
272  /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
273  dist = 0;
274  for (code = 0 ; code < 16; code++) {
275  base_dist[code] = dist;
276  for (n = 0; n < (1<<extra_dbits[code]); n++) {
277  _dist_code[dist++] = (uch)code;
278  }
279  }
280  Assert (dist == 256, "tr_static_init: dist != 256");
281  dist >>= 7; /* from now on, all distances are divided by 128 */
282  for ( ; code < D_CODES; code++) {
283  base_dist[code] = dist << 7;
284  for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
285  _dist_code[256 + dist++] = (uch)code;
286  }
287  }
288  Assert (dist == 256, "tr_static_init: 256+dist != 512");
289 
290  /* Construct the codes of the static literal tree */
291  for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
292  n = 0;
293  while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
294  while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
295  while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
296  while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
297  /* Codes 286 and 287 do not exist, but we must include them in the
298  * tree construction to get a canonical Huffman tree (longest code
299  * all ones)
300  */
301  gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
302 
303  /* The static distance tree is trivial: */
304  for (n = 0; n < D_CODES; n++) {
305  static_dtree[n].Len = 5;
306  static_dtree[n].Code = bi_reverse((unsigned)n, 5);
307  }
308  static_init_done = 1;
309 
310 # ifdef GEN_TREES_H
311  gen_trees_header();
312 # endif
313 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
314 }
315 
316 /* ===========================================================================
317  * Genererate the file trees.h describing the static trees.
318  */
319 #ifdef GEN_TREES_H
320 # ifndef DEBUG
321 # include <stdio.h>
322 # endif
323 
324 # define SEPARATOR(i, last, width) \
325  ((i) == (last)? "\n};\n\n" : \
326  ((i) % (width) == (width)-1 ? ",\n" : ", "))
327 
328 void gen_trees_header()
329 {
330  FILE *header = fopen("trees.h", "w");
331  int i;
332 
333  Assert (header != NULL, "Can't open trees.h");
334  fprintf(header,
335  "/* header created automatically with -DGEN_TREES_H */\n\n");
336 
337  fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
338  for (i = 0; i < L_CODES+2; i++) {
339  fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
340  static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
341  }
342 
343  fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
344  for (i = 0; i < D_CODES; i++) {
345  fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
346  static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
347  }
348 
349  fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
350  for (i = 0; i < DIST_CODE_LEN; i++) {
351  fprintf(header, "%2u%s", _dist_code[i],
352  SEPARATOR(i, DIST_CODE_LEN-1, 20));
353  }
354 
355  fprintf(header,
356  "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
357  for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
358  fprintf(header, "%2u%s", _length_code[i],
359  SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
360  }
361 
362  fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
363  for (i = 0; i < LENGTH_CODES; i++) {
364  fprintf(header, "%1u%s", base_length[i],
365  SEPARATOR(i, LENGTH_CODES-1, 20));
366  }
367 
368  fprintf(header, "local const int base_dist[D_CODES] = {\n");
369  for (i = 0; i < D_CODES; i++) {
370  fprintf(header, "%5u%s", base_dist[i],
371  SEPARATOR(i, D_CODES-1, 10));
372  }
373 
374  fclose(header);
375 }
376 #endif /* GEN_TREES_H */
377 
378 /* ===========================================================================
379  * Initialize the tree data structures for a new zlib stream.
380  */
382  deflate_state *s;
383 {
384  tr_static_init();
385 
386  s->l_desc.dyn_tree = s->dyn_ltree;
387  s->l_desc.stat_desc = &static_l_desc;
388 
389  s->d_desc.dyn_tree = s->dyn_dtree;
390  s->d_desc.stat_desc = &static_d_desc;
391 
392  s->bl_desc.dyn_tree = s->bl_tree;
393  s->bl_desc.stat_desc = &static_bl_desc;
394 
395  s->bi_buf = 0;
396  s->bi_valid = 0;
397 #ifdef DEBUG
398  s->compressed_len = 0L;
399  s->bits_sent = 0L;
400 #endif
401 
402  /* Initialize the first block of the first file: */
403  init_block(s);
404 }
405 
406 /* ===========================================================================
407  * Initialize a new block.
408  */
410  deflate_state *s;
411 {
412  int n; /* iterates over tree elements */
413 
414  /* Initialize the trees. */
415  for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
416  for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
417  for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
418 
419  s->dyn_ltree[END_BLOCK].Freq = 1;
420  s->opt_len = s->static_len = 0L;
421  s->last_lit = s->matches = 0;
422 }
423 
424 #define SMALLEST 1
425 /* Index within the heap array of least frequent node in the Huffman tree */
426 
427 
428 /* ===========================================================================
429  * Remove the smallest element from the heap and recreate the heap with
430  * one less element. Updates heap and heap_len.
431  */
432 #define pqremove(s, tree, top) \
433 {\
434  top = s->heap[SMALLEST]; \
435  s->heap[SMALLEST] = s->heap[s->heap_len--]; \
436  pqdownheap(s, tree, SMALLEST); \
437 }
438 
439 /* ===========================================================================
440  * Compares to subtrees, using the tree depth as tie breaker when
441  * the subtrees have equal frequency. This minimizes the worst case length.
442  */
443 #define smaller(tree, n, m, depth) \
444  (tree[n].Freq < tree[m].Freq || \
445  (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
446 
447 /* ===========================================================================
448  * Restore the heap property by moving down the tree starting at node k,
449  * exchanging a node with the smallest of its two sons if necessary, stopping
450  * when the heap property is re-established (each father smaller than its
451  * two sons).
452  */
453 local void pqdownheap(s, tree, k)
454  deflate_state *s;
455  ct_data *tree; /* the tree to restore */
456  int k; /* node to move down */
457 {
458  int v = s->heap[k];
459  int j = k << 1; /* left son of k */
460  while (j <= s->heap_len) {
461  /* Set j to the smallest of the two sons: */
462  if (j < s->heap_len &&
463  smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
464  j++;
465  }
466  /* Exit if v is smaller than both sons */
467  if (smaller(tree, v, s->heap[j], s->depth)) break;
468 
469  /* Exchange v with the smallest son */
470  s->heap[k] = s->heap[j]; k = j;
471 
472  /* And continue down the tree, setting j to the left son of k */
473  j <<= 1;
474  }
475  s->heap[k] = v;
476 }
477 
478 /* ===========================================================================
479  * Compute the optimal bit lengths for a tree and update the total bit length
480  * for the current block.
481  * IN assertion: the fields freq and dad are set, heap[heap_max] and
482  * above are the tree nodes sorted by increasing frequency.
483  * OUT assertions: the field len is set to the optimal bit length, the
484  * array bl_count contains the frequencies for each bit length.
485  * The length opt_len is updated; static_len is also updated if stree is
486  * not null.
487  */
488 local void gen_bitlen(s, desc)
489  deflate_state *s;
490  tree_desc *desc; /* the tree descriptor */
491 {
492  ct_data *tree = desc->dyn_tree;
493  int max_code = desc->max_code;
494  const ct_data *stree = desc->stat_desc->static_tree;
495  const intf *extra = desc->stat_desc->extra_bits;
496  int base = desc->stat_desc->extra_base;
497  int max_length = desc->stat_desc->max_length;
498  int h; /* heap index */
499  int n, m; /* iterate over the tree elements */
500  int bits; /* bit length */
501  int xbits; /* extra bits */
502  ush f; /* frequency */
503  int overflow = 0; /* number of elements with bit length too large */
504 
505  for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
506 
507  /* In a first pass, compute the optimal bit lengths (which may
508  * overflow in the case of the bit length tree).
509  */
510  tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
511 
512  for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
513  n = s->heap[h];
514  bits = tree[tree[n].Dad].Len + 1;
515  if (bits > max_length) bits = max_length, overflow++;
516  tree[n].Len = (ush)bits;
517  /* We overwrite tree[n].Dad which is no longer needed */
518 
519  if (n > max_code) continue; /* not a leaf node */
520 
521  s->bl_count[bits]++;
522  xbits = 0;
523  if (n >= base) xbits = extra[n-base];
524  f = tree[n].Freq;
525  s->opt_len += (ulg)f * (bits + xbits);
526  if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
527  }
528  if (overflow == 0) return;
529 
530  Trace((stderr,"\nbit length overflow\n"));
531  /* This happens for example on obj2 and pic of the Calgary corpus */
532 
533  /* Find the first bit length which could increase: */
534  do {
535  bits = max_length-1;
536  while (s->bl_count[bits] == 0) bits--;
537  s->bl_count[bits]--; /* move one leaf down the tree */
538  s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
539  s->bl_count[max_length]--;
540  /* The brother of the overflow item also moves one step up,
541  * but this does not affect bl_count[max_length]
542  */
543  overflow -= 2;
544  } while (overflow > 0);
545 
546  /* Now recompute all bit lengths, scanning in increasing frequency.
547  * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
548  * lengths instead of fixing only the wrong ones. This idea is taken
549  * from 'ar' written by Haruhiko Okumura.)
550  */
551  for (bits = max_length; bits != 0; bits--) {
552  n = s->bl_count[bits];
553  while (n != 0) {
554  m = s->heap[--h];
555  if (m > max_code) continue;
556  if ((unsigned) tree[m].Len != (unsigned) bits) {
557  Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
558  s->opt_len += ((long)bits - (long)tree[m].Len)
559  *(long)tree[m].Freq;
560  tree[m].Len = (ush)bits;
561  }
562  n--;
563  }
564  }
565 }
566 
567 /* ===========================================================================
568  * Generate the codes for a given tree and bit counts (which need not be
569  * optimal).
570  * IN assertion: the array bl_count contains the bit length statistics for
571  * the given tree and the field len is set for all tree elements.
572  * OUT assertion: the field code is set for all tree elements of non
573  * zero code length.
574  */
575 local void gen_codes (tree, max_code, bl_count)
576  ct_data *tree; /* the tree to decorate */
577  int max_code; /* largest code with non zero frequency */
578  ushf *bl_count; /* number of codes at each bit length */
579 {
580  ush next_code[MAX_BITS+1]; /* next code value for each bit length */
581  ush code = 0; /* running code value */
582  int bits; /* bit index */
583  int n; /* code index */
584 
585  /* The distribution counts are first used to generate the code values
586  * without bit reversal.
587  */
588  for (bits = 1; bits <= MAX_BITS; bits++) {
589  next_code[bits] = code = (code + bl_count[bits-1]) << 1;
590  }
591  /* Check that the bit counts in bl_count are consistent. The last code
592  * must be all ones.
593  */
594  Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
595  "inconsistent bit counts");
596  Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
597 
598  for (n = 0; n <= max_code; n++) {
599  int len = tree[n].Len;
600  if (len == 0) continue;
601  /* Now reverse the bits */
602  tree[n].Code = bi_reverse(next_code[len]++, len);
603 
604  Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
605  n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
606  }
607 }
608 
609 /* ===========================================================================
610  * Construct one Huffman tree and assigns the code bit strings and lengths.
611  * Update the total bit length for the current block.
612  * IN assertion: the field freq is set for all tree elements.
613  * OUT assertions: the fields len and code are set to the optimal bit length
614  * and corresponding code. The length opt_len is updated; static_len is
615  * also updated if stree is not null. The field max_code is set.
616  */
617 local void build_tree(s, desc)
618  deflate_state *s;
619  tree_desc *desc; /* the tree descriptor */
620 {
621  ct_data *tree = desc->dyn_tree;
622  const ct_data *stree = desc->stat_desc->static_tree;
623  int elems = desc->stat_desc->elems;
624  int n, m; /* iterate over heap elements */
625  int max_code = -1; /* largest code with non zero frequency */
626  int node; /* new node being created */
627 
628  /* Construct the initial heap, with least frequent element in
629  * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
630  * heap[0] is not used.
631  */
632  s->heap_len = 0, s->heap_max = HEAP_SIZE;
633 
634  for (n = 0; n < elems; n++) {
635  if (tree[n].Freq != 0) {
636  s->heap[++(s->heap_len)] = max_code = n;
637  s->depth[n] = 0;
638  } else {
639  tree[n].Len = 0;
640  }
641  }
642 
643  /* The pkzip format requires that at least one distance code exists,
644  * and that at least one bit should be sent even if there is only one
645  * possible code. So to avoid special checks later on we force at least
646  * two codes of non zero frequency.
647  */
648  while (s->heap_len < 2) {
649  node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
650  tree[node].Freq = 1;
651  s->depth[node] = 0;
652  s->opt_len--; if (stree) s->static_len -= stree[node].Len;
653  /* node is 0 or 1 so it does not have extra bits */
654  }
655  desc->max_code = max_code;
656 
657  /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
658  * establish sub-heaps of increasing lengths:
659  */
660  for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
661 
662  /* Construct the Huffman tree by repeatedly combining the least two
663  * frequent nodes.
664  */
665  node = elems; /* next internal node of the tree */
666  do {
667  pqremove(s, tree, n); /* n = node of least frequency */
668  m = s->heap[SMALLEST]; /* m = node of next least frequency */
669 
670  s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
671  s->heap[--(s->heap_max)] = m;
672 
673  /* Create a new node father of n and m */
674  tree[node].Freq = tree[n].Freq + tree[m].Freq;
675  s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
676  s->depth[n] : s->depth[m]) + 1);
677  tree[n].Dad = tree[m].Dad = (ush)node;
678 #ifdef DUMP_BL_TREE
679  if (tree == s->bl_tree) {
680  fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
681  node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
682  }
683 #endif
684  /* and insert the new node in the heap */
685  s->heap[SMALLEST] = node++;
686  pqdownheap(s, tree, SMALLEST);
687 
688  } while (s->heap_len >= 2);
689 
690  s->heap[--(s->heap_max)] = s->heap[SMALLEST];
691 
692  /* At this point, the fields freq and dad are set. We can now
693  * generate the bit lengths.
694  */
695  gen_bitlen(s, (tree_desc *)desc);
696 
697  /* The field len is now set, we can generate the bit codes */
698  gen_codes ((ct_data *)tree, max_code, s->bl_count);
699 }
700 
701 /* ===========================================================================
702  * Scan a literal or distance tree to determine the frequencies of the codes
703  * in the bit length tree.
704  */
705 local void scan_tree (s, tree, max_code)
706  deflate_state *s;
707  ct_data *tree; /* the tree to be scanned */
708  int max_code; /* and its largest code of non zero frequency */
709 {
710  int n; /* iterates over all tree elements */
711  int prevlen = -1; /* last emitted length */
712  int curlen; /* length of current code */
713  int nextlen = tree[0].Len; /* length of next code */
714  int count = 0; /* repeat count of the current code */
715  int max_count = 7; /* max repeat count */
716  int min_count = 4; /* min repeat count */
717 
718  if (nextlen == 0) max_count = 138, min_count = 3;
719  tree[max_code+1].Len = (ush)0xffff; /* guard */
720 
721  for (n = 0; n <= max_code; n++) {
722  curlen = nextlen; nextlen = tree[n+1].Len;
723  if (++count < max_count && curlen == nextlen) {
724  continue;
725  } else if (count < min_count) {
726  s->bl_tree[curlen].Freq += count;
727  } else if (curlen != 0) {
728  if (curlen != prevlen) s->bl_tree[curlen].Freq++;
729  s->bl_tree[REP_3_6].Freq++;
730  } else if (count <= 10) {
731  s->bl_tree[REPZ_3_10].Freq++;
732  } else {
733  s->bl_tree[REPZ_11_138].Freq++;
734  }
735  count = 0; prevlen = curlen;
736  if (nextlen == 0) {
737  max_count = 138, min_count = 3;
738  } else if (curlen == nextlen) {
739  max_count = 6, min_count = 3;
740  } else {
741  max_count = 7, min_count = 4;
742  }
743  }
744 }
745 
746 /* ===========================================================================
747  * Send a literal or distance tree in compressed form, using the codes in
748  * bl_tree.
749  */
750 local void send_tree (s, tree, max_code)
751  deflate_state *s;
752  ct_data *tree; /* the tree to be scanned */
753  int max_code; /* and its largest code of non zero frequency */
754 {
755  int n; /* iterates over all tree elements */
756  int prevlen = -1; /* last emitted length */
757  int curlen; /* length of current code */
758  int nextlen = tree[0].Len; /* length of next code */
759  int count = 0; /* repeat count of the current code */
760  int max_count = 7; /* max repeat count */
761  int min_count = 4; /* min repeat count */
762 
763  /* tree[max_code+1].Len = -1; */ /* guard already set */
764  if (nextlen == 0) max_count = 138, min_count = 3;
765 
766  for (n = 0; n <= max_code; n++) {
767  curlen = nextlen; nextlen = tree[n+1].Len;
768  if (++count < max_count && curlen == nextlen) {
769  continue;
770  } else if (count < min_count) {
771  do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
772 
773  } else if (curlen != 0) {
774  if (curlen != prevlen) {
775  send_code(s, curlen, s->bl_tree); count--;
776  }
777  Assert(count >= 3 && count <= 6, " 3_6?");
778  send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
779 
780  } else if (count <= 10) {
781  send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
782 
783  } else {
784  send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
785  }
786  count = 0; prevlen = curlen;
787  if (nextlen == 0) {
788  max_count = 138, min_count = 3;
789  } else if (curlen == nextlen) {
790  max_count = 6, min_count = 3;
791  } else {
792  max_count = 7, min_count = 4;
793  }
794  }
795 }
796 
797 /* ===========================================================================
798  * Construct the Huffman tree for the bit lengths and return the index in
799  * bl_order of the last bit length code to send.
800  */
802  deflate_state *s;
803 {
804  int max_blindex; /* index of last bit length code of non zero freq */
805 
806  /* Determine the bit length frequencies for literal and distance trees */
807  scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
808  scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
809 
810  /* Build the bit length tree: */
811  build_tree(s, (tree_desc *)(&(s->bl_desc)));
812  /* opt_len now includes the length of the tree representations, except
813  * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
814  */
815 
816  /* Determine the number of bit length codes to send. The pkzip format
817  * requires that at least 4 bit length codes be sent. (appnote.txt says
818  * 3 but the actual value used is 4.)
819  */
820  for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
821  if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
822  }
823  /* Update opt_len to include the bit length tree and counts */
824  s->opt_len += 3*(max_blindex+1) + 5+5+4;
825  Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
826  s->opt_len, s->static_len));
827 
828  return max_blindex;
829 }
830 
831 /* ===========================================================================
832  * Send the header for a block using dynamic Huffman trees: the counts, the
833  * lengths of the bit length codes, the literal tree and the distance tree.
834  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
835  */
836 local void send_all_trees(s, lcodes, dcodes, blcodes)
837  deflate_state *s;
838  int lcodes, dcodes, blcodes; /* number of codes for each tree */
839 {
840  int rank; /* index in bl_order */
841 
842  Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
843  Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
844  "too many codes");
845  Tracev((stderr, "\nbl counts: "));
846  send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
847  send_bits(s, dcodes-1, 5);
848  send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
849  for (rank = 0; rank < blcodes; rank++) {
850  Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
851  send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
852  }
853  Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
854 
855  send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
856  Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
857 
858  send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
859  Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
860 }
861 
862 /* ===========================================================================
863  * Send a stored block
864  */
865 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
866  deflate_state *s;
867  charf *buf; /* input block */
868  ulg stored_len; /* length of input block */
869  int last; /* one if this is the last block for a file */
870 {
871  send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
872 #ifdef DEBUG
873  s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
874  s->compressed_len += (stored_len + 4) << 3;
875 #endif
876  copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
877 }
878 
879 /* ===========================================================================
880  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
881  */
883  deflate_state *s;
884 {
885  bi_flush(s);
886 }
887 
888 /* ===========================================================================
889  * Send one empty static block to give enough lookahead for inflate.
890  * This takes 10 bits, of which 7 may remain in the bit buffer.
891  */
893  deflate_state *s;
894 {
895  send_bits(s, STATIC_TREES<<1, 3);
897 #ifdef DEBUG
898  s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
899 #endif
900  bi_flush(s);
901 }
902 
903 /* ===========================================================================
904  * Determine the best encoding for the current block: dynamic trees, static
905  * trees or store, and output the encoded block to the zip file.
906  */
907 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
908  deflate_state *s;
909  charf *buf; /* input block, or NULL if too old */
910  ulg stored_len; /* length of input block */
911  int last; /* one if this is the last block for a file */
912 {
913  ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
914  int max_blindex = 0; /* index of last bit length code of non zero freq */
915 
916  /* Build the Huffman trees unless a stored block is forced */
917  if (s->level > 0) {
918 
919  /* Check if the file is binary or text */
920  if (s->strm->data_type == Z_UNKNOWN)
921  s->strm->data_type = detect_data_type(s);
922 
923  /* Construct the literal and distance trees */
924  build_tree(s, (tree_desc *)(&(s->l_desc)));
925  Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
926  s->static_len));
927 
928  build_tree(s, (tree_desc *)(&(s->d_desc)));
929  Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
930  s->static_len));
931  /* At this point, opt_len and static_len are the total bit lengths of
932  * the compressed block data, excluding the tree representations.
933  */
934 
935  /* Build the bit length tree for the above two trees, and get the index
936  * in bl_order of the last bit length code to send.
937  */
938  max_blindex = build_bl_tree(s);
939 
940  /* Determine the best encoding. Compute the block lengths in bytes. */
941  opt_lenb = (s->opt_len+3+7)>>3;
942  static_lenb = (s->static_len+3+7)>>3;
943 
944  Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
945  opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
946  s->last_lit));
947 
948  if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
949 
950  } else {
951  Assert(buf != (char*)0, "lost buf");
952  opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
953  }
954 
955 #ifdef FORCE_STORED
956  if (buf != (char*)0) { /* force stored block */
957 #else
958  if (stored_len+4 <= opt_lenb && buf != (char*)0) {
959  /* 4: two words for the lengths */
960 #endif
961  /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
962  * Otherwise we can't have processed more than WSIZE input bytes since
963  * the last block flush, because compression would have been
964  * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
965  * transform a block into a stored block.
966  */
967  _tr_stored_block(s, buf, stored_len, last);
968 
969 #ifdef FORCE_STATIC
970  } else if (static_lenb >= 0) { /* force static trees */
971 #else
972  } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
973 #endif
974  send_bits(s, (STATIC_TREES<<1)+last, 3);
976 #ifdef DEBUG
977  s->compressed_len += 3 + s->static_len;
978 #endif
979  } else {
980  send_bits(s, (DYN_TREES<<1)+last, 3);
981  send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
982  max_blindex+1);
983  compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
984 #ifdef DEBUG
985  s->compressed_len += 3 + s->opt_len;
986 #endif
987  }
988  Assert (s->compressed_len == s->bits_sent, "bad compressed size");
989  /* The above check is made mod 2^32, for files larger than 512 MB
990  * and uLong implemented on 32 bits.
991  */
992  init_block(s);
993 
994  if (last) {
995  bi_windup(s);
996 #ifdef DEBUG
997  s->compressed_len += 7; /* align on byte boundary */
998 #endif
999  }
1000  Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1001  s->compressed_len-7*last));
1002 }
1003 
1004 /* ===========================================================================
1005  * Save the match info and tally the frequency counts. Return true if
1006  * the current block must be flushed.
1007  */
1008 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1009  deflate_state *s;
1010  unsigned dist; /* distance of matched string */
1011  unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1012 {
1013  s->d_buf[s->last_lit] = (ush)dist;
1014  s->l_buf[s->last_lit++] = (uch)lc;
1015  if (dist == 0) {
1016  /* lc is the unmatched char */
1017  s->dyn_ltree[lc].Freq++;
1018  } else {
1019  s->matches++;
1020  /* Here, lc is the match length - MIN_MATCH */
1021  dist--; /* dist = match distance - 1 */
1022  Assert((ush)dist < (ush)MAX_DIST(s) &&
1023  (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1024  (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1025 
1026  s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1027  s->dyn_dtree[d_code(dist)].Freq++;
1028  }
1029 
1030 #ifdef TRUNCATE_BLOCK
1031  /* Try to guess if it is profitable to stop the current block here */
1032  if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1033  /* Compute an upper bound for the compressed length */
1034  ulg out_length = (ulg)s->last_lit*8L;
1035  ulg in_length = (ulg)((long)s->strstart - s->block_start);
1036  int dcode;
1037  for (dcode = 0; dcode < D_CODES; dcode++) {
1038  out_length += (ulg)s->dyn_dtree[dcode].Freq *
1039  (5L+extra_dbits[dcode]);
1040  }
1041  out_length >>= 3;
1042  Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1043  s->last_lit, in_length, out_length,
1044  100L - out_length*100L/in_length));
1045  if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1046  }
1047 #endif
1048  return (s->last_lit == s->lit_bufsize-1);
1049  /* We avoid equality with lit_bufsize because of wraparound at 64K
1050  * on 16 bit machines and because stored blocks are restricted to
1051  * 64K-1 bytes.
1052  */
1053 }
1054 
1055 /* ===========================================================================
1056  * Send the block data compressed using the given Huffman trees
1057  */
1058 local void compress_block(s, ltree, dtree)
1059  deflate_state *s;
1060  ct_data *ltree; /* literal tree */
1061  ct_data *dtree; /* distance tree */
1062 {
1063  unsigned dist; /* distance of matched string */
1064  int lc; /* match length or unmatched char (if dist == 0) */
1065  unsigned lx = 0; /* running index in l_buf */
1066  unsigned code; /* the code to send */
1067  int extra; /* number of extra bits to send */
1068 
1069  if (s->last_lit != 0) do {
1070  dist = s->d_buf[lx];
1071  lc = s->l_buf[lx++];
1072  if (dist == 0) {
1073  send_code(s, lc, ltree); /* send a literal byte */
1074  Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1075  } else {
1076  /* Here, lc is the match length - MIN_MATCH */
1077  code = _length_code[lc];
1078  send_code(s, code+LITERALS+1, ltree); /* send the length code */
1079  extra = extra_lbits[code];
1080  if (extra != 0) {
1081  lc -= base_length[code];
1082  send_bits(s, lc, extra); /* send the extra length bits */
1083  }
1084  dist--; /* dist is now the match distance - 1 */
1085  code = d_code(dist);
1086  Assert (code < D_CODES, "bad d_code");
1087 
1088  send_code(s, code, dtree); /* send the distance code */
1089  extra = extra_dbits[code];
1090  if (extra != 0) {
1091  dist -= base_dist[code];
1092  send_bits(s, dist, extra); /* send the extra distance bits */
1093  }
1094  } /* literal or match pair ? */
1095 
1096  /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1097  Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1098  "pendingBuf overflow");
1099 
1100  } while (lx < s->last_lit);
1101 
1102  send_code(s, END_BLOCK, ltree);
1103 }
1104 
1105 /* ===========================================================================
1106  * Check if the data type is TEXT or BINARY, using the following algorithm:
1107  * - TEXT if the two conditions below are satisfied:
1108  * a) There are no non-portable control characters belonging to the
1109  * "black list" (0..6, 14..25, 28..31).
1110  * b) There is at least one printable character belonging to the
1111  * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1112  * - BINARY otherwise.
1113  * - The following partially-portable control characters form a
1114  * "gray list" that is ignored in this detection algorithm:
1115  * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1116  * IN assertion: the fields Freq of dyn_ltree are set.
1117  */
1119  deflate_state *s;
1120 {
1121  /* black_mask is the bit mask of black-listed bytes
1122  * set bits 0..6, 14..25, and 28..31
1123  * 0xf3ffc07f = binary 11110011111111111100000001111111
1124  */
1125  unsigned long black_mask = 0xf3ffc07fUL;
1126  int n;
1127 
1128  /* Check for non-textual ("black-listed") bytes. */
1129  for (n = 0; n <= 31; n++, black_mask >>= 1)
1130  if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1131  return Z_BINARY;
1132 
1133  /* Check for textual ("white-listed") bytes. */
1134  if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1135  || s->dyn_ltree[13].Freq != 0)
1136  return Z_TEXT;
1137  for (n = 32; n < LITERALS; n++)
1138  if (s->dyn_ltree[n].Freq != 0)
1139  return Z_TEXT;
1140 
1141  /* There are no "black-listed" or "white-listed" bytes:
1142  * this stream either is empty or has tolerated ("gray-listed") bytes only.
1143  */
1144  return Z_BINARY;
1145 }
1146 
1147 /* ===========================================================================
1148  * Reverse the first len bits of a code, using straightforward code (a faster
1149  * method would use a table)
1150  * IN assertion: 1 <= len <= 15
1151  */
1152 local unsigned bi_reverse(code, len)
1153  unsigned code; /* the value to invert */
1154  int len; /* its bit length */
1155 {
1156  register unsigned res = 0;
1157  do {
1158  res |= code & 1;
1159  code >>= 1, res <<= 1;
1160  } while (--len > 0);
1161  return res >> 1;
1162 }
1163 
1164 /* ===========================================================================
1165  * Flush the bit buffer, keeping at most 7 bits in it.
1166  */
1168  deflate_state *s;
1169 {
1170  if (s->bi_valid == 16) {
1171  put_short(s, s->bi_buf);
1172  s->bi_buf = 0;
1173  s->bi_valid = 0;
1174  } else if (s->bi_valid >= 8) {
1175  put_byte(s, (Byte)s->bi_buf);
1176  s->bi_buf >>= 8;
1177  s->bi_valid -= 8;
1178  }
1179 }
1180 
1181 /* ===========================================================================
1182  * Flush the bit buffer and align the output on a byte boundary
1183  */
1185  deflate_state *s;
1186 {
1187  if (s->bi_valid > 8) {
1188  put_short(s, s->bi_buf);
1189  } else if (s->bi_valid > 0) {
1190  put_byte(s, (Byte)s->bi_buf);
1191  }
1192  s->bi_buf = 0;
1193  s->bi_valid = 0;
1194 #ifdef DEBUG
1195  s->bits_sent = (s->bits_sent+7) & ~7;
1196 #endif
1197 }
1198 
1199 /* ===========================================================================
1200  * Copy a stored block, storing first the length and its
1201  * one's complement if requested.
1202  */
1203 local void copy_block(s, buf, len, header)
1204  deflate_state *s;
1205  charf *buf; /* the input data */
1206  unsigned len; /* its length */
1207  int header; /* true if block header must be written */
1208 {
1209  bi_windup(s); /* align on byte boundary */
1210 
1211  if (header) {
1212  put_short(s, (ush)len);
1213  put_short(s, (ush)~len);
1214 #ifdef DEBUG
1215  s->bits_sent += 2*16;
1216 #endif
1217  }
1218 #ifdef DEBUG
1219  s->bits_sent += (ulg)len<<3;
1220 #endif
1221  while (len--) {
1222  put_byte(s, *buf++);
1223  }
1224 }