ActorCritic Class
This class implements a GBT-based Actor-Critic learner for reinforcement learning. The ActorCritic class can be used with a shared-tree structure or a separate tree strucutre. Usage examples: GBT-based PPO/AWR implementations.
- class gbrl.ac_gbrl.ActorCritic(tree_struct: Dict, output_dim: int, policy_optimizer: Dict, value_optimizer: Dict = None, shared_tree_struct: bool = True, gbrl_params: Dict = {}, bias: ndarray = None, verbose: int = 0, device: str = 'cpu')[source]
Bases:
GBRL
- actor_step(observations: ndarray | Tensor, policy_grad_clip: float = None, policy_grad: ndarray | Tensor | None = None) None [source]
Performs a single boosting step for the actor (should only be used if actor and critic use separate models)
- Parameters:
observations (Union[np.ndarray, th.Tensor])
policy_grad_clip (float, optional) – Defaults to None.
policy_grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.
- Returns:
policy gradient
- Return type:
np.ndarray
- copy() ActorCritic [source]
Copy class instance
- Returns:
copy of current instance
- Return type:
- critic_step(observations: ndarray | Tensor, value_grad_clip: float = None, value_grad: ndarray | Tensor | None = None) None [source]
Performs a single boosting step for the critic (should only be used if actor and critic use separate models)
- Parameters:
observations (Union[np.ndarray, th.Tensor])
value_grad_clip (float, optional) – Defaults to None.
value_grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.
- Returns:
value gradient
- Return type:
np.ndarray
- get_num_trees() int | Tuple[int, int] [source]
Returns number of trees in the ensemble. If separate actor and critic return number of trees per ensemble. :returns: Union[int, Tuple[int, int]]
- get_params() Tuple[ndarray, ndarray] [source]
Returns predicted actor and critic parameters and their respective gradients
- Returns:
Tuple[np.ndarray, np.ndarray]
- classmethod load_model(load_name: str, device: str) ActorCritic [source]
Loads GBRL model from a file
- Parameters:
load_name (str) – full path to file name
- Returns:
loaded ActorCriticModel
- Return type:
- predict_values(observations: ndarray | Tensor, requires_grad: bool = True, start_idx: int = 0, stop_idx: int = None, tensor: bool = True) ndarray | Tensor [source]
- Predict only values. If requires_grad=True then stores
differentiable parameters in self.params Return type/device is identical to the input type/device.
- Parameters:
observations (Union[np.ndarray, th.Tensor])
requires_grad (bool, optional)
start_idx (int, optional) – start tree index for prediction. Defaults to 0.
stop_idx (_type_, optional) – stop tree index for prediction (uses all trees in the ensemble if set to 0). Defaults to None.
tensor (bool, optional) – Return PyTorch Tensor, False returns a numpy array. Defaults to True.
- Returns:
values
- Return type:
Union[np.ndarray, th.Tensor]
- step(observations: ndarray | Tensor, policy_grad_clip: float = None, value_grad_clip: float = None, policy_grad: ndarray | Tensor | None = None, value_grad: ndarray | Tensor | None = None) None [source]
Performs a boosting step for both actor and critic
- Parameters:
observations (Union[np.ndarray, th.Tensor])
policy_grad_clip (float, optional) – . Defaults to None.
value_grad_clip (float, optional) – . Defaults to None.
policy_grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.
value_grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.