ParametricActor Class
This class implements a GBT-based Parametric Actor for reinforcement learning. The ParametricActor outputs a single parameter per action dimension. This allows the ParametericActor to parameterized deterministic policies or discrete stochastic policies such as a Categorical Distribution.
- class gbrl.ac_gbrl.ParametricActor(tree_struct: Dict, output_dim: int, policy_optimizer: Dict, gbrl_params: Dict = {}, bias: ndarray = None, verbose: int = 0, device: str = 'cpu')[source]
Bases:
GBRL
- classmethod load_model(load_name: str) ParametricActor [source]
Loads GBRL model from a file
- Parameters:
load_name (str) – full path to file name
- Returns:
loaded ActorCriticModel
- Return type:
- step(observations: ndarray | Tensor, policy_grad_clip: float = None, policy_grad: ndarray | Tensor | None = None) None [source]
Performs a single boosting iteration.
- Parameters:
observations (Union[np.ndarray, th.Tensor])
policy_grad_clip (float, optional) – . Defaults to None.
policy_grad (Optional[Union[np.ndarray, th.Tensor]], optional) – manually calculated gradients. Defaults to None.