protomotions.agents.amp.config module#

Configuration classes for AMP (Adversarial Motion Priors) agent.

This module defines configurations for the AMP algorithm which uses a discriminator to learn motion priors from reference motions.

class protomotions.agents.amp.config.AMPParametersConfig(
conditional_discriminator=False,
discriminator_reward_w=1.0,
discriminator_weight_decay=0.0001,
discriminator_logit_weight_decay=0.01,
discriminator_batch_size=4096,
discriminator_grad_penalty=5.0,
discriminator_optimization_ratio=1,
discriminator_replay_keep_prob=0.01,
discriminator_replay_size=200000,
discriminator_reward_threshold=0.05,
discriminator_max_cumulative_bad_transitions=10,
)[source]#

Bases: object

Configuration for AMP-specific hyperparameters.

Attributes:

conditional_discriminator: Whether to use conditional discriminator based on motion state. discriminator_reward_w: Weight for discriminator reward in total reward. discriminator_weight_decay: L2 weight decay for discriminator parameters. discriminator_logit_weight_decay: Weight decay specifically for discriminator logit layer. discriminator_batch_size: Batch size for discriminator training. discriminator_grad_penalty: Gradient penalty coefficient for discriminator stability. discriminator_optimization_ratio: Ratio of discriminator updates to policy updates. discriminator_replay_keep_prob: Probability to keep samples in replay buffer. discriminator_replay_size: Maximum size of discriminator replay buffer. discriminator_reward_threshold: Threshold for discriminator reward termination. discriminator_max_cumulative_bad_transitions: Max bad transitions before termination.

conditional_discriminator: bool = False#
discriminator_reward_w: float = 1.0#
discriminator_weight_decay: float = 0.0001#
discriminator_logit_weight_decay: float = 0.01#
discriminator_batch_size: int = 4096#
discriminator_grad_penalty: float = 5.0#
discriminator_optimization_ratio: int = 1#
discriminator_replay_keep_prob: float = 0.01#
discriminator_replay_size: int = 200000#
discriminator_reward_threshold: float = 0.05#
discriminator_max_cumulative_bad_transitions: int = 10#
__init__(
conditional_discriminator=False,
discriminator_reward_w=1.0,
discriminator_weight_decay=0.0001,
discriminator_logit_weight_decay=0.01,
discriminator_batch_size=4096,
discriminator_grad_penalty=5.0,
discriminator_optimization_ratio=1,
discriminator_replay_keep_prob=0.01,
discriminator_replay_size=200000,
discriminator_reward_threshold=0.05,
discriminator_max_cumulative_bad_transitions=10,
)#
class protomotions.agents.amp.config.DiscriminatorConfig(
models=<factory>,
_target_='protomotions.agents.amp.model.Discriminator',
in_keys=<factory>,
out_keys=<factory>,
)[source]#

Bases: ModuleContainerConfig

Configuration for AMP Discriminator network.

Attributes:

models: List of module configurations to execute sequentially. in_keys: Input tensor keys required by this container. out_keys: Output key for discriminator logits.

out_keys: List[str]#
__init__(
models=<factory>,
_target_='protomotions.agents.amp.model.Discriminator',
in_keys=<factory>,
out_keys=<factory>,
)#
class protomotions.agents.amp.config.AMPModelConfig(
_target_='protomotions.agents.amp.model.AMPModel',
in_keys=<factory>,
out_keys=<factory>,
actor=<factory>,
critic=<factory>,
actor_optimizer=<factory>,
critic_optimizer=<factory>,
discriminator=<factory>,
discriminator_optimizer=<factory>,
disc_critic=<factory>,
disc_critic_optimizer=<factory>,
)[source]#

Bases: PPOModelConfig

Configuration for AMP Model (Actor-Critic with Discriminator).

Attributes:

in_keys: Input keys. out_keys: Output keys including actions and value estimate. actor: Actor (policy) network configuration. critic: Critic (value) network configuration. actor_optimizer: Optimizer settings for actor network. critic_optimizer: Optimizer settings for critic network. discriminator: Discriminator network for motion prior learning. discriminator_optimizer: Optimizer settings for discriminator. disc_critic: Critic network for discriminator reward. disc_critic_optimizer: Optimizer settings for discriminator critic.

discriminator: DiscriminatorConfig#
discriminator_optimizer: OptimizerConfig#
disc_critic: ModuleContainerConfig#
disc_critic_optimizer: OptimizerConfig#
__init__(
_target_='protomotions.agents.amp.model.AMPModel',
in_keys=<factory>,
out_keys=<factory>,
actor=<factory>,
critic=<factory>,
actor_optimizer=<factory>,
critic_optimizer=<factory>,
discriminator=<factory>,
discriminator_optimizer=<factory>,
disc_critic=<factory>,
disc_critic_optimizer=<factory>,
)#
class protomotions.agents.amp.config.AMPAgentConfig(
batch_size,
training_max_steps,
_target_='protomotions.agents.amp.agent.AMP',
model=<factory>,
num_steps=32,
gradient_clip_val=0.0,
fail_on_bad_grads=False,
check_grad_mag=True,
gamma=0.99,
bounds_loss_coef=0.0,
task_reward_w=1.0,
num_mini_epochs=1,
training_early_termination=None,
save_epoch_checkpoint_every=1000,
save_last_checkpoint_every=10,
max_episode_length_manager=None,
evaluator=<factory>,
normalize_rewards=True,
normalized_reward_clamp_value=5.0,
tau=0.95,
e_clip=0.2,
clip_critic_loss=True,
actor_clip_frac_threshold=0.6,
advantage_normalization=<factory>,
amp_parameters=<factory>,
reference_obs_components=<factory>,
)[source]#

Bases: PPOAgentConfig

Main configuration class for AMP Agent.

Attributes:

batch_size: Training batch size. training_max_steps: Maximum training steps. model: AMP model configuration including discriminator. num_steps: Environment steps per update. gradient_clip_val: Max gradient norm. 0=disabled. fail_on_bad_grads: Fail on NaN/Inf gradients. check_grad_mag: Log gradient magnitude. gamma: Discount factor. bounds_loss_coef: Action bounds loss. 0 for tanh outputs. task_reward_w: Task reward weight. num_mini_epochs: Mini-epochs per update. training_early_termination: Stop early at this step. None=disabled. save_epoch_checkpoint_every: Save epoch_xxx.ckpt every N epochs. save_last_checkpoint_every: Save last.ckpt every K epochs. max_episode_length_manager: Episode length curriculum. evaluator: Evaluation config. normalize_rewards: Normalize rewards. normalized_reward_clamp_value: Clamp normalized rewards to [-val, val]. tau: GAE lambda for advantage estimation. e_clip: PPO clipping parameter epsilon. clip_critic_loss: Clip critic loss similar to actor. actor_clip_frac_threshold: Skip actor update if clip_frac > threshold (e.g., 0.5). advantage_normalization: Advantage normalization settings. amp_parameters: AMP-specific training parameters. reference_obs_components: Observation components for computing reference motion features.

model: AMPModelConfig#
amp_parameters: AMPParametersConfig#
reference_obs_components: Dict[str, ObservationComponentConfig]#
__init__(
batch_size,
training_max_steps,
_target_='protomotions.agents.amp.agent.AMP',
model=<factory>,
num_steps=32,
gradient_clip_val=0.0,
fail_on_bad_grads=False,
check_grad_mag=True,
gamma=0.99,
bounds_loss_coef=0.0,
task_reward_w=1.0,
num_mini_epochs=1,
training_early_termination=None,
save_epoch_checkpoint_every=1000,
save_last_checkpoint_every=10,
max_episode_length_manager=None,
evaluator=<factory>,
normalize_rewards=True,
normalized_reward_clamp_value=5.0,
tau=0.95,
e_clip=0.2,
clip_critic_loss=True,
actor_clip_frac_threshold=0.6,
advantage_normalization=<factory>,
amp_parameters=<factory>,
reference_obs_components=<factory>,
)#