Download Datasets#
We provide pre-generated datasets for all four benchmark tasks, hosted on Hugging Face. Each dataset contains mindmap-formatted data ready for training, along with the original HDF5 demonstration files.
Available Datasets#
Cube Stacking: nvidia/PhysicalAI-Robotics-mindmap-Franka-Cube-Stacking
Mug in Drawer: nvidia/PhysicalAI-Robotics-mindmap-Franka-Mug-in-Drawer
Drill in Box: nvidia/PhysicalAI-Robotics-mindmap-GR1-Drill-in-Box
Stick in Bin: nvidia/PhysicalAI-Robotics-mindmap-GR1-Stick-in-Bin
Each dataset includes:
Original HDF5 file from Isaac Lab Mimic for data generation
10 demonstrations in mindmap format, ready for training
Prerequisites#
Before downloading, ensure you have:
Hugging Face account registered
Read-access token ready for authentication
Download Instructions#
Install the Hugging Face Hub CLI:
pip install -U "huggingface_hub[cli]"
Authenticate with your token:
hf auth login
Download a dataset for your chosen task:
hf download \ nvidia/PhysicalAI-Robotics-mindmap-Franka-Cube-Stacking \ --repo-type dataset \ --local-dir <LOCAL_DATASET_PATH>
hf download \ nvidia/PhysicalAI-Robotics-mindmap-Franka-Mug-in-Drawer \ --repo-type dataset \ --local-dir <LOCAL_DATASET_PATH>
hf download \ nvidia/PhysicalAI-Robotics-mindmap-GR1-Drill-in-Box \ --repo-type dataset \ --local-dir <LOCAL_DATASET_PATH>
hf download \ nvidia/PhysicalAI-Robotics-mindmap-GR1-Stick-in-Bin \ --repo-type dataset \ --local-dir <LOCAL_DATASET_PATH>
Extract the demonstration files:
python mindmap/scripts/untar_demos.py \ --demos_dir <LOCAL_DATASET_PATH> \ --num_processes 10 \ --remove_tar
Dataset Structure#
After extraction, your downloaded dataset will have the following structure:
📂 <LOCAL_DATASET_PATH>
├── 📂 demo_00000/
├── 📂 demo_00001/
├── 📂 ...
├── 📂 demo_00009/
├── <HDF5_FILE_NAME>.hdf5
└── README.md
Each demo_XXXXX/
folder contains the mindmap-formatted data for one demonstration, while the HDF5 file contains the original Isaac Lab Mimic data.
For detailed information about the dataset structure, see Dataset Structure.
Note
Replace <LOCAL_DATASET_PATH>
with your desired local directory path for storing the dataset.