Configuration
Sionna’s configuration API. It can be used to set global variables which can be used by all modules and functions.
- class sionna.config.Config[source]
Sionna configuration class
This singleton class is used to define global configuration variables and random number generators that can be accessed from all modules and functions. It is instantiated immediately and its properties can be accessed as “sionna.config.desired_property”.
- property np_rng
NumPy random number generator
import sionna sionna.config.seed = 42 # Set seed for deterministic results # Use generator instead of np.random noise = sionna.config.np_rng.normal(size=[4])
- Type:
np.random.Generator
- property py_rng
Python random number generator
import sionna sionna.config.seed = 42 # Set seed for deterministic results # Use generator instead of random int = sionna.config.py_rng.randint(0, 10)
- Type:
random.Random()
- property seed
Get/set seed for all random number generators
All random number generators used internally by Sionna can be configured with a common seed to ensure reproducability of results. It defaults to None which implies that a random seed will be used and results are non-deterministic.
# This code will lead to deterministic results import sionna sionna.config.seed = 42 print(sionna.utils.BinarySource()([10]))
tf.Tensor([0. 1. 1. 1. 1. 0. 1. 0. 1. 0.], shape=(10,), dtype=float32)
- Type:
int
- property tf_rng
TensorFlow random number generator
import sionna sionna.config.seed = 42 # Set seed for deterministic results # Use generator instead of tf.random noise = sionna.config.tf_rng.normal([4])
- Type:
tf.random.Generator
- property xla_compat
Ensure that functions execute in an XLA compatible way.
Not all TensorFlow ops support the three execution modes for all dtypes: Eager, Graph, and Graph with XLA. For this reason, some functions are implemented differently depending on the execution mode. As it is currently impossible to programmatically determine if a function is executed in Graph or Graph with XLA mode, the
xla_compat
property can be used to indicate which execution mode is desired. Note that most functions will work in all execution modes independently of the value of this property.This property can be used like this:
import sionna sionna.config.xla_compat=True @tf.function(jit_compile=True) def func() # Implementation func()
- Type:
bool