Source code for sionna.channel.apply_time_channel

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""Layer for applying channel responses to channel inputs in the time domain"""

import tensorflow as tf

import numpy as np

import scipy

from sionna.utils import insert_dims
from .awgn import AWGN

[docs]class ApplyTimeChannel(tf.keras.layers.Layer): # pylint: disable=line-too-long r"""ApplyTimeChannel(num_time_samples, l_tot, add_awgn=True, dtype=tf.complex64, **kwargs) Apply time domain channel responses ``h_time`` to channel inputs ``x``, by filtering the channel inputs with time-variant channel responses. This class inherits from the Keras `Layer` class and can be used as layer in a Keras model. For each batch example, ``num_time_samples`` + ``l_tot`` - 1 time steps of a channel realization are required to filter the channel inputs. The channel output consists of ``num_time_samples`` + ``l_tot`` - 1 time samples, as it is the result of filtering the channel input of length ``num_time_samples`` with the time-variant channel filter of length ``l_tot``. In the case of a single-input single-output link and given a sequence of channel inputs :math:`x_0,\cdots,x_{N_B}`, where :math:`N_B` is ``num_time_samples``, this layer outputs .. math:: y_b = \sum_{\ell = 0}^{L_{\text{tot}}} x_{b-\ell} \bar{h}_{b,\ell} + w_b where :math:`L_{\text{tot}}` corresponds ``l_tot``, :math:`w_b` to the additive noise, and :math:`\bar{h}_{b,\ell}` to the :math:`\ell^{th}` tap of the :math:`b^{th}` channel sample. This layer outputs :math:`y_b` for :math:`b` ranging from 0 to :math:`N_B + L_{\text{tot}} - 1`, and :math:`x_{b}` is set to 0 for :math:`b \geq N_B`. For multiple-input multiple-output (MIMO) links, the channel output is computed for each antenna of each receiver and by summing over all the antennas of all transmitters. Parameters ---------- num_time_samples : int Number of time samples forming the channel input (:math:`N_B`) l_tot : int Length of the channel filter (:math:`L_{\text{tot}} = L_{\text{max}} - L_{\text{min}} + 1`) add_awgn : bool If set to `False`, no white Gaussian noise is added. Defaults to `True`. dtype : tf.DType Complex datatype to use for internal processing and output. Defaults to `tf.complex64`. Input ----- (x, h_time, no) or (x, h_time): Tuple: x : [batch size, num_tx, num_tx_ant, num_time_samples], tf.complex Channel inputs h_time : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_samples + l_tot - 1, l_tot], tf.complex Channel responses. For each batch example, ``num_time_samples`` + ``l_tot`` - 1 time steps of a channel realization are required to filter the channel inputs. no : Scalar or Tensor, tf.float Scalar or tensor whose shape can be broadcast to the shape of the channel outputs: [batch size, num_rx, num_rx_ant, num_time_samples + l_tot - 1]. Only required if ``add_awgn`` is set to `True`. The noise power ``no`` is per complex dimension. If ``no`` is a scalar, noise of the same variance will be added to the outputs. If ``no`` is a tensor, it must have a shape that can be broadcast to the shape of the channel outputs. This allows, e.g., adding noise of different variance to each example in a batch. If ``no`` has a lower rank than the channel outputs, then ``no`` will be broadcast to the shape of the channel outputs by adding dummy dimensions after the last axis. Output ------- y : [batch size, num_rx, num_rx_ant, num_time_samples + l_tot - 1], tf.complex Channel outputs. The channel output consists of ``num_time_samples`` + ``l_tot`` - 1 time samples, as it is the result of filtering the channel input of length ``num_time_samples`` with the time-variant channel filter of length ``l_tot``. """ def __init__(self, num_time_samples, l_tot, add_awgn=True, dtype=tf.complex64, **kwargs): super().__init__(trainable=False, dtype=dtype, **kwargs) self._add_awgn = add_awgn # The channel transfert function is implemented by first gathering from # the vector of transmitted baseband symbols # x = [x_0,...,x_{num_time_samples-1}]^T the symbols that are then # multiplied by the channel tap coefficients. # We build here the matrix of indices G, with size # `num_time_samples + l_tot - 1` x `l_tot` that is used to perform this # gathering. # For example, if there are 4 channel taps # h = [h_0, h_1, h_2, h_3]^T # and `num_time_samples` = 10 time steps then G would be # [[0, 10, 10, 10] # [1, 0, 10, 10] # [2, 1, 0, 10] # [3, 2, 1, 0] # [4, 3, 2, 1] # [5, 4, 3, 2] # [6, 5, 4, 3] # [7, 6, 5, 4] # [8, 7, 6, 5] # [9, 8, 7, 6] # [10, 9, 8, 7] # [10,10, 9, 8] # [10,10, 10, 9] # Note that G is a Toeplitz matrix. # In this example, the index `num_time_samples`=10 corresponds to the # zero symbol. The vector of transmitted symbols is padded with one # zero at the end. first_colum = np.concatenate([ np.arange(0, num_time_samples), np.full([l_tot-1], num_time_samples)]) first_row = np.concatenate([[0], np.full([l_tot-1], num_time_samples)]) self._g = scipy.linalg.toeplitz(first_colum, first_row) def build(self, input_shape): #pylint: disable=unused-argument if self._add_awgn: self._awgn = AWGN(dtype=self.dtype) def call(self, inputs): if self._add_awgn: x, h_time, no = inputs else: x, h_time = inputs # Preparing the channel input for broadcasting and matrix multiplication x = tf.pad(x, [[0,0], [0,0], [0,0], [0,1]]) x = insert_dims(x, 2, axis=1) x = tf.gather(x, self._g, axis=-1) # Apply the channel response y = tf.reduce_sum(h_time*x, axis=-1) y = tf.reduce_sum(tf.reduce_sum(y, axis=4), axis=3) # Add AWGN if requested if self._add_awgn: y = self._awgn((y, no)) return y