Source code for sionna.channel.optical.edfa

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#

"""
This module defines a model for an Erbium-Doped Fiber Amplifier.
"""
import tensorflow as tf
from tensorflow.keras.layers import Layer
import sionna


[docs]class EDFA(Layer): # pylint: disable=line-too-long r"""EDFA(g=4.0,f=7.0,f_c=193.55e12,dt=1e-12,with_dual_polarization=False,dtype=tf.complex64,**kwargs) Layer implementing a model of an Erbium-Doped Fiber Amplifier Amplifies the optical input signal by a given gain and adds amplified spontaneous emission (ASE) noise. The noise figure including the noise due to beating of signal and spontaneous emission is :math:`F_\mathrm{ASE,shot} =\frac{\mathrm{SNR} _\mathrm{in}}{\mathrm{SNR}_\mathrm{out}}`, where ideally the detector is limited by shot noise only, and :math:`\text{SNR}` is the signal-to-noise-ratio. Shot noise is neglected here but is required to derive the noise power of the amplifier, as otherwise the input SNR is infinitely large. Hence, for the input SNR, it follows [A2012]_ that :math:`\mathrm{SNR}_\mathrm{in}=\frac{P}{2hf_cW}`, where :math:`h` denotes Planck's constant, :math:`P` is the signal power, and :math:`W` the considered bandwidth. The output SNR is decreased by ASE noise induced by the amplification. Note that shot noise is applied after the amplifier and is hence not amplified. It results that :math:`\mathrm{SNR}_\mathrm{out}=\frac{GP}{\left (4\rho_\mathrm{ASE}+2hf_c\right)W}`, where :math:`G` is the parametrized gain. Hence, one can write the former equation as :math:`F_\mathrm{ASE,shot} = 2 n_\mathrm{sp} \left(1-G^{-1}\right) + G^{-1}`. Dropping shot noise again results in :math:`F = 2 n_\mathrm{sp} \left(1-G^ {-1}\right)=2 n_\mathrm{sp} \frac{G-1}{G}`. For a transparent link, e.g., the required gain per span is :math:`G = \exp\left(\alpha \ell \right)`. The spontaneous emission factor is :math:`n_\mathrm{sp}=\frac{F} {2}\frac{G}{G-1}`. According to [A2012]_ and [EKWFG2010]_ combined with [BGT2000]_ and [GD1991]_, the noise power spectral density of the EDFA per state of polarization is obtained as :math:`\rho_\mathrm{ASE}^{(1)} = n_\mathrm{sp}\left (G-1\right) h f_c=\frac{1}{2}G F h f_c`. At simulation frequency :math:`f_\mathrm{sim}`, the noise has a power of :math:`P_\mathrm{ASE}^{(1)}=\sigma_\mathrm{n,ASE}^2=2\rho_\mathrm{ASE}^{(1)} \cdot f_\mathrm{sim}`, where the factor :math:`2` accounts for the unpolarized noise (for dual polarization the factor is :math:`1` per polarization). Here, the notation :math:`()^{(1)}` means that this is the noise introduced by a single EDFA. This class inherits from the Keras `Layer` class and can be used as layer in a Keras model. Example -------- Setting-up: >>> edfa = EDFA( >>> g=4.0, >>> f=2.0, >>> f_c=193.55e12, >>> dt=1.0e-12, >>> with_dual_polarization=False) Running: >>> # x is the optical input signal >>> y = EDFA(x) Parameters ---------- g : float Amplifier gain (linear domain). Defaults to 4.0. f : float Noise figure (linear domain). Defaults to 7.0. f_c : float Carrier frequency :math:`f_\mathrm{c}` in :math:`(\text{Hz})`. Defaults to 193.55e12. dt : float Time step :math:`\Delta_t` in :math:`(\text{s})`. Defaults to 1e-12. with_dual_polarization : bool Considers axis [-2] as x- and y-polarization and applies the noise per polarization. Defaults to `False`. dtype : tf.complex Defines the datatype for internal calculations and the output dtype. Defaults to `tf.complex64`. Input ----- x : Tensor, tf.complex Optical input signal Output ------- y : Tensor with same shape as ``x``, ``dtype`` Amplifier output """ def __init__( self, g=4.0, f=7.0, f_c=193.55e12, dt=1e-12, with_dual_polarization=False, dtype=tf.complex64, **kwargs): super().__init__(dtype=dtype, **kwargs) self._dtype = dtype self._cdtype = tf.as_dtype(dtype) self._rdtype = tf.as_dtype(dtype).real_dtype self._g = tf.cast(g, self._rdtype) self._f = tf.cast(f, self._rdtype) self._f_c = tf.cast(f_c, self._rdtype) self._dt = tf.cast(dt, self._rdtype) assert isinstance(with_dual_polarization, bool), \ "with_dual_polarization must be bool." self._with_dual_polarization = with_dual_polarization # Spontaneous emission factor if self._g == 1.0: self._n_sp = tf.cast(0.0, self._rdtype) else: self._n_sp = self._f / tf.cast( 2.0, self._rdtype) * self._g / ( self._g - tf.cast(1.0, self._rdtype)) self._rho_n_ase = tf.cast( self._n_sp * (self._g - tf.cast(1.0, self._rdtype)) * sionna.constants.H * self._f_c, self._rdtype) # Noise density in (W/Hz) self._p_n_ase = tf.cast( 2.0, self._rdtype) * self._rho_n_ase * tf.cast( 1.0, self._rdtype) / (self._dt) # Noise power in (W) if self._with_dual_polarization: self._p_n_ase = self._p_n_ase / tf.cast(2.0, self._rdtype) def call(self, inputs): if self._with_dual_polarization: tf.assert_equal(tf.shape(inputs)[-2], 2) x = tf.cast(inputs, self._cdtype) # Calculate noise signal with given noise power n = tf.complex( tf.random.normal( tf.shape(x), tf.cast(0.0, self._rdtype), tf.sqrt(self._p_n_ase / tf.cast(2.0, self._rdtype)), self._rdtype), tf.random.normal( tf.shape(x), tf.cast(0.0, self._rdtype), tf.sqrt(self._p_n_ase / tf.cast(2.0, self._rdtype)), self._rdtype)) # Amplify signal x = x * tf.cast(tf.sqrt(self._g), self._cdtype) # Add noise signal y = x + n return y