Source code for sionna.channel.utils

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""Utility functions for the channel module"""

import tensorflow as tf
import warnings

from sionna import PI
from sionna import config
from sionna.utils import expand_to_rank


[docs] def subcarrier_frequencies(num_subcarriers, subcarrier_spacing, dtype=tf.complex64): # pylint: disable=line-too-long r""" Compute the baseband frequencies of ``num_subcarrier`` subcarriers spaced by ``subcarrier_spacing``, i.e., >>> # If num_subcarrier is even: >>> frequencies = [-num_subcarrier/2, ..., 0, ..., num_subcarrier/2-1] * subcarrier_spacing >>> >>> # If num_subcarrier is odd: >>> frequencies = [-(num_subcarrier-1)/2, ..., 0, ..., (num_subcarrier-1)/2] * subcarrier_spacing Input ------ num_subcarriers : int Number of subcarriers subcarrier_spacing : float Subcarrier spacing [Hz] dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output ------ frequencies : [``num_subcarrier``], tf.float Baseband frequencies of subcarriers """ if dtype.is_complex: real_dtype = dtype.real_dtype elif dtype.if_floating: real_dtype = dtype else: raise AssertionError("dtype must be a complex or floating datatype") if tf.equal(tf.math.floormod(num_subcarriers, 2), 0): start=-num_subcarriers/2 limit=num_subcarriers/2 else: start=-(num_subcarriers-1)/2 limit=(num_subcarriers-1)/2+1 frequencies = tf.range( start=start, limit=limit, dtype=real_dtype) frequencies = frequencies*subcarrier_spacing return frequencies
[docs] def time_frequency_vector(num_samples, sample_duration, dtype=tf.float32): # pylint: disable=line-too-long r""" Compute the time and frequency vector for a given number of samples and duration per sample in normalized time unit. >>> t = tf.cast(tf.linspace(-n_min, n_max, num_samples), dtype) * sample_duration >>> f = tf.cast(tf.linspace(-n_min, n_max, num_samples), dtype) * 1/(sample_duration*num_samples) Input ------ num_samples : int Number of samples sample_duration : float Sample duration in normalized time dtype : tf.DType Datatype to use for internal processing and output. Defaults to `tf.float32`. Output ------ t : [``num_samples``], ``dtype`` Time vector f : [``num_samples``], ``dtype`` Frequency vector """ num_samples = int(num_samples) if tf.math.mod(num_samples, 2) == 0: # if even n_min = tf.cast(-(num_samples) / 2, dtype=tf.int32) n_max = tf.cast((num_samples) / 2 - 1, dtype=tf.int32) else: # if odd n_min = tf.cast(-(num_samples-1) / 2, dtype=tf.int32) n_max = tf.cast((num_samples+1) / 2 - 1, dtype=tf.int32) # Time vector t = tf.cast(tf.linspace(n_min, n_max, num_samples), dtype) \ * tf.cast(sample_duration, dtype) # Frequency vector df = tf.cast(1.0/sample_duration, dtype)/tf.cast(num_samples, dtype) f = tf.cast(tf.linspace(n_min, n_max, num_samples), dtype) \ * tf.cast(df, dtype) return t, f
[docs] def time_lag_discrete_time_channel(bandwidth, maximum_delay_spread=3e-6): # pylint: disable=line-too-long r""" Compute the smallest and largest time-lag for the descrete complex baseband channel, i.e., :math:`L_{\text{min}}` and :math:`L_{\text{max}}`. The smallest time-lag (:math:`L_{\text{min}}`) returned is always -6, as this value was found small enough for all models included in Sionna. The largest time-lag (:math:`L_{\text{max}}`) is computed from the ``bandwidth`` and ``maximum_delay_spread`` as follows: .. math:: L_{\text{max}} = \lceil W \tau_{\text{max}} \rceil + 6 where :math:`L_{\text{max}}` is the largest time-lag, :math:`W` the ``bandwidth``, and :math:`\tau_{\text{max}}` the ``maximum_delay_spread``. The default value for the ``maximum_delay_spread`` is 3us, which was found to be large enough to include most significant paths with all channel models included in Sionna assuming a nominal delay spread of 100ns. Note ---- The values of :math:`L_{\text{min}}` and :math:`L_{\text{max}}` computed by this function are only recommended values. :math:`L_{\text{min}}` and :math:`L_{\text{max}}` should be set according to the considered channel model. For OFDM systems, one also needs to be careful that the effective length of the complex baseband channel is not larger than the cyclic prefix length. Input ------ bandwidth : float Bandwith (:math:`W`) [Hz] maximum_delay_spread : float Maximum delay spread [s]. Defaults to 3us. Output ------- l_min : int Smallest time-lag (:math:`L_{\text{min}}`) for the descrete complex baseband channel. Set to -6, , as this value was found small enough for all models included in Sionna. l_max : int Largest time-lag (:math:`L_{\text{max}}`) for the descrete complex baseband channel """ l_min = tf.cast(-6, tf.int32) l_max = tf.math.ceil(maximum_delay_spread*bandwidth) + 6 l_max = tf.cast(l_max, tf.int32) return l_min, l_max
[docs] def cir_to_ofdm_channel(frequencies, a, tau, normalize=False): # pylint: disable=line-too-long r""" Compute the frequency response of the channel at ``frequencies``. Given a channel impulse response :math:`(a_{m}, \tau_{m}), 0 \leq m \leq M-1` (inputs ``a`` and ``tau``), the channel frequency response for the frequency :math:`f` is computed as follows: .. math:: \widehat{h}(f) = \sum_{m=0}^{M-1} a_{m} e^{-j2\pi f \tau_{m}} Input ------ frequencies : [fft_size], tf.float Frequencies at which to compute the channel response a : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths, num_time_steps], tf.complex Path coefficients tau : [batch size, num_rx, num_tx, num_paths] or [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths], tf.float Path delays normalize : bool If set to `True`, the channel is normalized over the resource grid to ensure unit average energy per resource element. Defaults to `False`. Output ------- h_f : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_steps, fft_size], tf.complex Channel frequency responses at ``frequencies`` """ real_dtype = tau.dtype if len(tau.shape) == 4: # Expand dims to broadcast with h. Add the following dimensions: # - number of rx antennas (2) # - number of tx antennas (4) tau = tf.expand_dims(tf.expand_dims(tau, axis=2), axis=4) # Broadcast is not supported yet by TF for such high rank tensors. # We therefore do part of it manually tau = tf.tile(tau, [1, 1, 1, 1, a.shape[4], 1]) # Add a time samples dimension for broadcasting tau = tf.expand_dims(tau, axis=6) # Bring all tensors to broadcastable shapes tau = tf.expand_dims(tau, axis=-1) h = tf.expand_dims(a, axis=-1) frequencies = expand_to_rank(frequencies, tf.rank(tau), axis=0) ## Compute the Fourier transforms of all cluster taps # Exponential component e = tf.exp(tf.complex(tf.constant(0, real_dtype), -2*PI*frequencies*tau)) h_f = h*e # Sum over all clusters to get the channel frequency responses h_f = tf.reduce_sum(h_f, axis=-3) if normalize: # Normalization is performed such that for each batch example and # link the energy per resource grid is one. # Average over TX antennas, RX antennas, OFDM symbols and # subcarriers. c = tf.reduce_mean( tf.square(tf.abs(h_f)), axis=(2,4,5,6), keepdims=True) c = tf.complex(tf.sqrt(c), tf.constant(0., real_dtype)) h_f = tf.math.divide_no_nan(h_f, c) return h_f
[docs] def cir_to_time_channel(bandwidth, a, tau, l_min, l_max, normalize=False): # pylint: disable=line-too-long r""" Compute the channel taps forming the discrete complex-baseband representation of the channel from the channel impulse response (``a``, ``tau``). This function assumes that a sinc filter is used for pulse shaping and receive filtering. Therefore, given a channel impulse response :math:`(a_{m}(t), \tau_{m}), 0 \leq m \leq M-1`, the channel taps are computed as follows: .. math:: \bar{h}_{b, \ell} = \sum_{m=0}^{M-1} a_{m}\left(\frac{b}{W}\right) \text{sinc}\left( \ell - W\tau_{m} \right) for :math:`\ell` ranging from ``l_min`` to ``l_max``, and where :math:`W` is the ``bandwidth``. Input ------ bandwidth : float Bandwidth [Hz] a : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths, num_time_steps], tf.complex Path coefficients tau : [batch size, num_rx, num_tx, num_paths] or [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_paths], tf.float Path delays [s] l_min : int Smallest time-lag for the discrete complex baseband channel (:math:`L_{\text{min}}`) l_max : int Largest time-lag for the discrete complex baseband channel (:math:`L_{\text{max}}`) normalize : bool If set to `True`, the channel is normalized over the block size to ensure unit average energy per time step. Defaults to `False`. Output ------- hm : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_time_steps, l_max - l_min + 1], tf.complex Channel taps coefficients """ real_dtype = tau.dtype if len(tau.shape) == 4: # Expand dims to broadcast with h. Add the following dimensions: # - number of rx antennas (2) # - number of tx antennas (4) tau = tf.expand_dims(tf.expand_dims(tau, axis=2), axis=4) # Broadcast is not supported by TF for such high rank tensors. # We therefore do part of it manually tau = tf.tile(tau, [1, 1, 1, 1, a.shape[4], 1]) # Add a time samples dimension for broadcasting tau = tf.expand_dims(tau, axis=6) # Time lags for which to compute the channel taps l = tf.range(l_min, l_max+1, dtype=real_dtype) # Bring tau and l to broadcastable shapes tau = tf.expand_dims(tau, axis=-1) l = expand_to_rank(l, tau.shape.rank, axis=0) # sinc pulse shaping g = tf.experimental.numpy.sinc(l-tau*bandwidth) g = tf.complex(g, tf.constant(0., real_dtype)) a = tf.expand_dims(a, axis=-1) # For every tap, sum the sinc-weighted coefficients hm = tf.reduce_sum(a*g, axis=-3) if normalize: # Normalization is performed such that for each batch example and # link the energy per block is one. # The total energy of a channel response is the sum of the squared # norm over the channel taps. # Average over block size, RX antennas, and TX antennas c = tf.reduce_mean(tf.reduce_sum(tf.square(tf.abs(hm)), axis=6, keepdims=True), axis=(2,4,5), keepdims=True) c = tf.complex(tf.sqrt(c), tf.constant(0., real_dtype)) hm = tf.math.divide_no_nan(hm, c) return hm
[docs] def time_to_ofdm_channel(h_t, rg, l_min): # pylint: disable=line-too-long r""" Compute the channel frequency response from the discrete complex-baseband channel impulse response. Given a discrete complex-baseband channel impulse response :math:`\bar{h}_{b,\ell}`, for :math:`\ell` ranging from :math:`L_\text{min}\le 0` to :math:`L_\text{max}`, the discrete channel frequency response is computed as .. math:: \hat{h}_{b,n} = \sum_{k=0}^{L_\text{max}} \bar{h}_{b,k} e^{-j \frac{2\pi kn}{N}} + \sum_{k=L_\text{min}}^{-1} \bar{h}_{b,k} e^{-j \frac{2\pi n(N+k)}{N}}, \quad n=0,\dots,N-1 where :math:`N` is the FFT size and :math:`b` is the time step. This function only produces one channel frequency response per OFDM symbol, i.e., only values of :math:`b` corresponding to the start of an OFDM symbol (after cyclic prefix removal) are considered. Input ------ h_t : [...num_time_steps,l_max-l_min+1], tf.complex Tensor of discrete complex-baseband channel impulse responses resource_grid : :class:`~sionna.ofdm.ResourceGrid` Resource grid l_min : int Smallest time-lag for the discrete complex baseband channel impulse response (:math:`L_{\text{min}}`) Output ------ h_f : [...,num_ofdm_symbols,fft_size], tf.complex Tensor of discrete complex-baseband channel frequency responses Note ---- Note that the result of this function is generally different from the output of :meth:`~sionna.channel.utils.cir_to_ofdm_channel` because the discrete complex-baseband channel impulse response is truncated (see :meth:`~sionna.channel.utils.cir_to_time_channel`). This effect can be observed in the example below. Examples -------- .. code-block:: Python # Setup resource grid and channel model sm = StreamManagement(np.array([[1]]), 1) rg = ResourceGrid(num_ofdm_symbols=1, fft_size=1024, subcarrier_spacing=15e3) tdl = TDL("A", 100e-9, 3.5e9) # Generate CIR cir = tdl(batch_size=1, num_time_steps=1, sampling_frequency=rg.bandwidth) # Generate OFDM channel from CIR frequencies = subcarrier_frequencies(rg.fft_size, rg.subcarrier_spacing) h_freq = tf.squeeze(cir_to_ofdm_channel(frequencies, *cir, normalize=True)) # Generate time channel from CIR l_min, l_max = time_lag_discrete_time_channel(rg.bandwidth) h_time = cir_to_time_channel(rg.bandwidth, *cir, l_min=l_min, l_max=l_max, normalize=True) # Generate OFDM channel from time channel h_freq_hat = tf.squeeze(time_to_ofdm_channel(h_time, rg, l_min)) # Visualize results plt.figure() plt.plot(np.real(h_freq), "-") plt.plot(np.real(h_freq_hat), "--") plt.plot(np.imag(h_freq), "-") plt.plot(np.imag(h_freq_hat), "--") plt.xlabel("Subcarrier index") plt.ylabel(r"Channel frequency response") plt.legend(["OFDM Channel (real)", "OFDM Channel from time (real)", "OFDM Channel (imag)", "OFDM Channel from time (imag)"]) .. image:: ../figures/time_to_ofdm_channel.png """ # Totla length of an OFDM symbol including cyclic prefix ofdm_length = rg.fft_size + rg.cyclic_prefix_length # Downsample the impulse respons to one sample per OFDM symbol h_t = h_t[...,rg.cyclic_prefix_length:rg.num_time_samples:ofdm_length, :] # Pad channel impulse response with zeros to the FFT size pad_dims = rg.fft_size - tf.shape(h_t)[-1] pad_shape = tf.concat([tf.shape(h_t)[:-1], [pad_dims]], axis=-1) h_t = tf.concat([h_t, tf.zeros(pad_shape, dtype=h_t.dtype)], axis=-1) # Circular shift of negative time lags so that the channel impulse reponse # starts with h_{b,0} h_t = tf.roll(h_t, l_min, axis=-1) # Compute FFT h_f = tf.signal.fft(h_t) # Move the zero subcarrier to the center of the spectrum h_f = tf.signal.fftshift(h_f, axes=-1) return h_f
[docs] def deg_2_rad(x): r""" Convert degree to radian Input ------ x : Tensor Angles in degree Output ------- y : Tensor Angles ``x`` converted to radian """ return x*tf.constant(PI/180.0, x.dtype)
[docs] def rad_2_deg(x): r""" Convert radian to degree Input ------ x : Tensor Angles in radian Output ------- y : Tensor Angles ``x`` converted to degree """ return x*tf.constant(180.0/PI, x.dtype)
[docs] def wrap_angle_0_360(angle): r""" Wrap ``angle`` to (0,360) Input ------ angle : Tensor Input to wrap Output ------- y : Tensor ``angle`` wrapped to (0,360) """ return tf.math.mod(angle, 360.)
def sample_bernoulli(shape, p, dtype=tf.float32): r""" Sample a tensor with shape ``shape`` from a Bernoulli distribution with probability ``p`` Input -------- shape : Tensor shape Shape of the tensor to sample p : Broadcastable with ``shape``, tf.float Probability dtype : tf.DType Datatype to use for internal processing and output. Output -------- : Tensor of shape ``shape``, bool Binary samples """ z = config.tf_rng.uniform(shape=shape, minval=0.0, maxval=1.0, dtype=dtype) z = tf.math.less(z, p) return z
[docs] def drop_uts_in_sector(batch_size, num_ut, min_bs_ut_dist, isd, bs_height=0., ut_height=0., dtype=tf.complex64): r""" Uniformly sample UT locations from a sector The sector from which UTs are sampled is shown in the following figure. The BS is assumed to be located at the origin (0,0) of the coordinate system. .. figure:: ../figures/drop_uts_in_sector.png :align: center :scale: 30% Input -------- batch_size : int Batch size num_ut : int Number of UTs to sample per batch example min_bs_ut_dist : tf.float Minimum BS-UT distance [m] isd : tf.float Inter-site distance, i.e., the distance between two adjacent BSs [m] bs_height : tf.float BS height, i.e., distance between the BS and the X-Y plane [m]. Defaults to 0. ut_height : tf.float UT height, i.e., distance between the BS and the X-Y plane [m]. Defaults to 0. dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output ------ ut_loc : [batch_size, num_ut, 2], tf.float UT locations in the X-Y plane """ if dtype.is_complex: real_dtype = dtype.real_dtype elif dtype.if_floating: real_dtype = dtype else: raise AssertionError("dtype must be a complex or floating datatype") # Cast to real_dtype d_min = tf.cast(min_bs_ut_dist, real_dtype) bs_height = tf.cast(bs_height, real_dtype) ut_height = tf.cast(ut_height, real_dtype) # Force the minimum BS-UT distance >= their height difference d_min = tf.maximum(d_min, tf.abs(bs_height - ut_height)) r = tf.cast(isd*0.5, real_dtype) # Minimum squared distance between BS and UT on the X-Y plane r_min2 = d_min**2 - (bs_height - ut_height)**2 # Angles from (-pi/6, pi/6), covering half of the sector and denoted by # alpha_half, are randomly sampled for all UTs. # Then, the maximum distance of UTs from the BS, denoted by r_max, # is computed for each angle. # For each angles, UT positions are sampled such that their *squared* from # the BTS is uniformly sampled from the range (r_min**2, r_max**2) # Each UT is then randomly and uniformly pushed to a half of the sector # by adding either PI/6 or PI/2 to the angle alpha_half # Sample angles for half of the sector (which half will be decided randomly) alpha_half = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=-PI/6., maxval=PI/6., dtype=real_dtype) # Maximum distance (computed on the X-Y plane) from BS to a point in # the sector, at each angle in alpha_half r_max = r / tf.math.cos(alpha_half) # To ensure the UT distribution to be uniformly distributed across the # sector, we sample positions such that their *squared* distance from # the BS is uniformly distributed within (r_min**2, r_max**2) distance2 = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=r_min2, maxval=r_max**2, dtype=real_dtype) distance = tf.sqrt(distance2) # Randomly assign the UTs to one of the two half of the sector side = sample_bernoulli([batch_size, num_ut], tf.cast(0.5, real_dtype), real_dtype) side = tf.cast(side, real_dtype) side = 2.*side + 1. alpha = alpha_half + side*PI/6. # Compute UT locations in the X-Y plane ut_loc = tf.stack([distance*tf.math.cos(alpha), distance*tf.math.sin(alpha)], axis=-1) return ut_loc
[docs] def set_3gpp_scenario_parameters( scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability = None, min_ut_velocity=None, max_ut_velocity=None, dtype=tf.complex64): r""" Set valid parameters for a specified 3GPP system level ``scenario`` (RMa, UMi, or UMa). If a parameter is given, then it is returned. If it is set to `None`, then a parameter valid according to the chosen scenario is returned (see [TR38901]_). Input -------- scenario : str System level model scenario. Must be one of "rma", "umi", or "uma". min_bs_ut_dist : None or tf.float Minimum BS-UT distance [m] isd : None or tf.float Inter-site distance [m] bs_height : None or tf.float BS elevation [m] min_ut_height : None or tf.float Minimum UT elevation [m] max_ut_height : None or tf.float Maximum UT elevation [m] indoor_probability : None or tf.float Probability of a UT to be indoor min_ut_velocity : None or tf.float Minimum UT velocity [m/s] max_ut_velocity : None or tf.float Maximim UT velocity [m/s] dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output -------- min_bs_ut_dist : tf.float Minimum BS-UT distance [m] isd : tf.float Inter-site distance [m] bs_height : tf.float BS elevation [m] min_ut_height : tf.float Minimum UT elevation [m] max_ut_height : tf.float Maximum UT elevation [m] indoor_probability : tf.float Probability of a UT to be indoor min_ut_velocity : tf.float Minimum UT velocity [m/s] max_ut_velocity : tf.float Maximim UT velocity [m/s] """ assert scenario in ('umi', 'uma', 'rma'),\ "`scenario` must be one of 'umi', 'uma', 'rma'" if dtype.is_complex: real_dtype = dtype.real_dtype elif dtype.if_floating: real_dtype = dtype else: raise AssertionError("dtype must be a complex or floating datatype") # Default values for scenario parameters. # From TR38.901, sections 7.2 and 7.4. # All distances and heights are in meters # All velocities are in meters per second. default_scenario_par = {'umi' : { 'min_bs_ut_dist' : tf.constant(10., real_dtype), 'isd' : tf.constant(200., real_dtype), 'bs_height' : tf.constant(10., real_dtype), 'min_ut_height' : tf.constant(1.5, real_dtype), 'max_ut_height' : tf.constant(1.5, real_dtype), 'indoor_probability' : tf.constant(0.8, real_dtype), 'min_ut_velocity' : tf.constant(0.0, real_dtype), 'max_ut_velocity' :tf.constant(0.0, real_dtype) }, 'uma' : { 'min_bs_ut_dist' : tf.constant(35., real_dtype), 'isd' : tf.constant(500., real_dtype), 'bs_height' : tf.constant(25., real_dtype), 'min_ut_height' : tf.constant(1.5, real_dtype), 'max_ut_height' : tf.constant(1.5, real_dtype), 'indoor_probability' : tf.constant(0.8, real_dtype), 'min_ut_velocity' : tf.constant(0.0, real_dtype), 'max_ut_velocity' : tf.constant(0.0, real_dtype), }, 'rma' : { 'min_bs_ut_dist' : tf.constant(35., real_dtype), 'isd' : tf.constant(5000., real_dtype), 'bs_height' : tf.constant(35., real_dtype), 'min_ut_height' : tf.constant(1.5, real_dtype), 'max_ut_height' : tf.constant(1.5, real_dtype), 'indoor_probability' : tf.constant(0.5, real_dtype), 'min_ut_velocity' : tf.constant(0.0, real_dtype), 'max_ut_velocity' : tf.constant(0.0, real_dtype) } } # Setting the scenario parameters if min_bs_ut_dist is None: min_bs_ut_dist = default_scenario_par[scenario]['min_bs_ut_dist'] if isd is None: isd = default_scenario_par[scenario]['isd'] if bs_height is None: bs_height = default_scenario_par[scenario]['bs_height'] if min_ut_height is None: min_ut_height = default_scenario_par[scenario]['min_ut_height'] if max_ut_height is None: max_ut_height = default_scenario_par[scenario]['max_ut_height'] if indoor_probability is None: indoor_probability =default_scenario_par[scenario]['indoor_probability'] if min_ut_velocity is None: min_ut_velocity = default_scenario_par[scenario]['min_ut_velocity'] if max_ut_velocity is None: max_ut_velocity = default_scenario_par[scenario]['max_ut_velocity'] return min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height,\ indoor_probability, min_ut_velocity, max_ut_velocity
[docs] def relocate_uts(ut_loc, sector_id, cell_loc): # pylint: disable=line-too-long r""" Relocate the UTs by rotating them into the sector with index ``sector_id`` and transposing them to the cell centered on ``cell_loc``. ``sector_id`` gives the index of the sector to which the UTs are rotated to. The picture below shows how the three sectors of a cell are indexed. .. figure:: ../figures/panel_array_sector_id.png :align: center :scale: 30% Indexing of sectors If ``sector_id`` is a scalar, then all UTs are relocated to the same sector indexed by ``sector_id``. If ``sector_id`` is a tensor, it should be broadcastable with [``batch_size``, ``num_ut``], and give the sector in which each UT or batch example is relocated to. When calling the function, ``ut_loc`` gives the locations of the UTs to relocate, which are all assumed to be in sector with index 0, and in the cell centered on the origin (0,0). Input -------- ut_loc : [batch_size, num_ut, 2], tf.float UTs locations in the X-Y plan sector_id : Tensor broadcastable with [batch_size, num_ut], int Indexes of the sector to which to relocate the UTs cell_loc : Tensor broadcastable with [batch_size, num_ut], tf.float Center of the cell to which to transpose the UTs Output ------ ut_loc : [batch_size, num_ut, 2], tf.float Relocated UTs locations in the X-Y plan """ # Expand the rank of sector_id such that is is broadcastable with # (batch size, num_ut) sector_id = tf.cast(sector_id, ut_loc.dtype) sector_id = expand_to_rank(sector_id, 2, 0) # Expant cell_loc = tf.cast(cell_loc, ut_loc.dtype) cell_loc = expand_to_rank(cell_loc, tf.rank(ut_loc), 0) # Rotation matrix tensor, broadcastable with [batch size, num uts, 2, 2] rotation_angle = sector_id*2.*PI/3.0 rotation_matrix = tf.stack([tf.math.cos(rotation_angle), -tf.math.sin(rotation_angle), tf.math.sin(rotation_angle), tf.math.cos(rotation_angle)], axis=-1) rotation_matrix = tf.reshape(rotation_matrix, tf.concat([tf.shape(rotation_angle), [2,2]], axis=-1)) rotation_matrix = tf.cast(rotation_matrix, ut_loc.dtype) # Applying the rotation matrix ut_loc = tf.expand_dims(ut_loc, axis=-1) ut_loc_rotated = tf.squeeze(rotation_matrix@ut_loc, axis=-1) # Translate to the BS location ut_loc_rotated_translated = ut_loc_rotated + cell_loc return ut_loc_rotated_translated
def generate_uts_topology( batch_size, num_ut, drop_area, cell_loc_xy, min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype=tf.complex64): # pylint: disable=line-too-long r""" Sample UTs location from a sector or a cell Input -------- batch_size : int Batch size num_ut : int Number of UTs to sample per batch example drop_area : str 'sector' or 'cell'. If set to 'sector', UTs are sampled from the sector with index 0 in the figure below .. figure:: ../figures/panel_array_sector_id.png :align: center :scale: 30% Indexing of sectors cell_loc_xy : Tensor broadcastable with[batch_size, num_ut, 3], tf.float Center of the cell(s) min_bs_ut_dist : None or tf.float Minimum BS-UT distance [m] isd : None or tf.float Inter-site distance [m] min_ut_height : None or tf.float Minimum UT elevation [m] max_ut_height : None or tf.float Maximum UT elevation [m] indoor_probability : None or tf.float Probability of a UT to be indoor min_ut_velocity : None or tf.float Minimum UT velocity [m/s] max_ut_velocity : None or tf.float Maximum UT velocity [m/s] dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output ------ ut_loc : [batch_size, num_ut, 3], tf.float UTs locations ut_orientations : [batch_size, num_ut, 3], tf.float UTs orientations [radian] ut_velocities : [batch_size, num_ut, 3], tf.float UTs velocities [m/s] in_state : [batch_size, num_ut], tf.float Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. """ assert drop_area in ('sector', 'cell'),\ "Drop area must be either 'sector' or 'cell'" if dtype.is_complex: real_dtype = dtype.real_dtype elif dtype.if_floating: real_dtype = dtype else: raise AssertionError("dtype must be a complex or floating datatype") # Randomly generating the UT locations ut_loc_xy = drop_uts_in_sector(batch_size, num_ut, min_bs_ut_dist, isd, dtype=dtype) if drop_area == 'sector': sectors = tf.constant(0, tf.int32) else: # 'cell' sectors = config.tf_rng.uniform(shape=[batch_size, num_ut], minval=0, maxval=3, dtype=tf.int32) ut_loc_xy = relocate_uts(ut_loc_xy, sectors, cell_loc_xy) ut_loc_z = config.tf_rng.uniform(shape=[batch_size, num_ut, 1], minval=min_ut_height, maxval=max_ut_height, dtype=real_dtype) ut_loc = tf.concat([ut_loc_xy, ut_loc_z], axis=-1) # Randomly generating the UT indoor/outdoor state in_state = sample_bernoulli([batch_size, num_ut], indoor_probability, real_dtype) # Randomly generate the UT velocities ut_vel_angle = config.tf_rng.uniform([batch_size, num_ut], minval=-PI, maxval=PI, dtype=real_dtype) ut_vel_norm = config.tf_rng.uniform([batch_size, num_ut], minval=min_ut_velocity, maxval=max_ut_velocity, dtype=real_dtype) ut_velocities = tf.stack([ut_vel_norm*tf.math.cos(ut_vel_angle), ut_vel_norm*tf.math.sin(ut_vel_angle), tf.zeros([batch_size, num_ut], real_dtype)], axis=-1) # Randomly generate the UT orientations ut_bearing = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=real_dtype) ut_downtilt = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=real_dtype) ut_slant = config.tf_rng.uniform([batch_size, num_ut], minval=-0.5*PI, maxval=0.5*PI, dtype=real_dtype) ut_orientations = tf.stack([ut_bearing, ut_downtilt, ut_slant], axis=-1) return ut_loc, ut_orientations, ut_velocities, in_state
[docs] def gen_single_sector_topology( batch_size, num_ut, scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability = None, min_ut_velocity=None, max_ut_velocity=None, dtype=tf.complex64): # pylint: disable=line-too-long r""" Generate a batch of topologies consisting of a single BS located at the origin and ``num_ut`` UTs randomly and uniformly dropped in a cell sector. The following picture shows the sector from which UTs are sampled. .. figure:: ../figures/drop_uts_in_sector.png :align: center :scale: 30% UTs orientations are randomly and uniformly set, whereas the BS orientation is set such that the it is oriented towards the center of the sector. The drop configuration can be controlled through the optional parameters. Parameters set to `None` are set to valid values according to the chosen ``scenario`` (see [TR38901]_). The returned batch of topologies can be used as-is with the :meth:`set_topology` method of the system level models, i.e. :class:`~sionna.channel.tr38901.UMi`, :class:`~sionna.channel.tr38901.UMa`, and :class:`~sionna.channel.tr38901.RMa`. Example -------- >>> # Create antenna arrays >>> bs_array = PanelArray(num_rows_per_panel = 4, ... num_cols_per_panel = 4, ... polarization = 'dual', ... polarization_type = 'VH', ... antenna_pattern = '38.901', ... carrier_frequency = 3.5e9) >>> >>> ut_array = PanelArray(num_rows_per_panel = 1, ... num_cols_per_panel = 1, ... polarization = 'single', ... polarization_type = 'V', ... antenna_pattern = 'omni', ... carrier_frequency = 3.5e9) >>> # Create channel model >>> channel_model = UMi(carrier_frequency = 3.5e9, ... o2i_model = 'low', ... ut_array = ut_array, ... bs_array = bs_array, ... direction = 'uplink') >>> # Generate the topology >>> topology = gen_single_sector_topology(batch_size = 100, ... num_ut = 4, ... scenario = 'umi') >>> # Set the topology >>> ut_loc, bs_loc, ut_orientations, bs_orientations, ut_velocities, in_state = topology >>> channel_model.set_topology(ut_loc, ... bs_loc, ... ut_orientations, ... bs_orientations, ... ut_velocities, ... in_state) >>> channel_model.show_topology() .. image:: ../figures/drop_uts_in_sector_topology.png Input -------- batch_size : int Batch size num_ut : int Number of UTs to sample per batch example scenario : str System leven model scenario. Must be one of "rma", "umi", or "uma". min_bs_ut_dist : None or tf.float Minimum BS-UT distance [m] isd : None or tf.float Inter-site distance [m] bs_height : None or tf.float BS elevation [m] min_ut_height : None or tf.float Minimum UT elevation [m] max_ut_height : None or tf.float Maximum UT elevation [m] indoor_probability : None or tf.float Probability of a UT to be indoor min_ut_velocity : None or tf.float Minimum UT velocity [m/s] max_ut_velocity : None or tf.float Maximim UT velocity [m/s] dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output ------ ut_loc : [batch_size, num_ut, 3], tf.float UTs locations bs_loc : [batch_size, 1, 3], tf.float BS location. Set to (0,0,0) for all batch examples. ut_orientations : [batch_size, num_ut, 3], tf.float UTs orientations [radian] bs_orientations : [batch_size, 1, 3], tf.float BS orientations [radian]. Oriented towards the center of the sector. ut_velocities : [batch_size, num_ut, 3], tf.float UTs velocities [m/s] in_state : [batch_size, num_ut], tf.float Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. """ params = set_3gpp_scenario_parameters( scenario, min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype) min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height,\ indoor_probability, min_ut_velocity, max_ut_velocity = params real_dtype = dtype.real_dtype # Setting BS to (0,0,bs_height) bs_loc = tf.stack([ tf.zeros([batch_size, 1], real_dtype), tf.zeros([batch_size, 1], real_dtype), tf.fill( [batch_size, 1], bs_height)], axis=-1) # Setting the BS orientation such that it is downtilted towards the center # of the sector sector_center = (min_bs_ut_dist + 0.5*isd)*0.5 bs_downtilt = 0.5*PI - tf.math.atan(sector_center/bs_height) bs_yaw = tf.constant(PI/3.0, real_dtype) bs_orientation = tf.stack([ tf.fill([batch_size, 1], bs_yaw), tf.fill([batch_size, 1], bs_downtilt), tf.zeros([batch_size, 1], real_dtype)], axis=-1) # Generating the UTs ut_topology = generate_uts_topology( batch_size, num_ut, 'sector', tf.zeros([2], real_dtype), min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype) ut_loc, ut_orientations, ut_velocities, in_state = ut_topology return ut_loc, bs_loc, ut_orientations, bs_orientation, ut_velocities,\ in_state
[docs] def gen_single_sector_topology_interferers( batch_size, num_ut, num_interferer, scenario, min_bs_ut_dist=None, isd=None, bs_height=None, min_ut_height=None, max_ut_height=None, indoor_probability = None, min_ut_velocity=None, max_ut_velocity=None, dtype=tf.complex64): # pylint: disable=line-too-long r""" Generate a batch of topologies consisting of a single BS located at the origin, ``num_ut`` UTs randomly and uniformly dropped in a cell sector, and ``num_interferer`` interfering UTs randomly dropped in the adjacent cells. The following picture shows how UTs are sampled .. figure:: ../figures/drop_uts_in_sector_interferers.png :align: center :scale: 30% UTs orientations are randomly and uniformly set, whereas the BS orientation is set such that it is oriented towards the center of the sector it serves. The drop configuration can be controlled through the optional parameters. Parameters set to `None` are set to valid values according to the chosen ``scenario`` (see [TR38901]_). The returned batch of topologies can be used as-is with the :meth:`set_topology` method of the system level models, i.e. :class:`~sionna.channel.tr38901.UMi`, :class:`~sionna.channel.tr38901.UMa`, and :class:`~sionna.channel.tr38901.RMa`. In the returned ``ut_loc``, ``ut_orientations``, ``ut_velocities``, and ``in_state`` tensors, the first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfering UTs. Example -------- >>> # Create antenna arrays >>> bs_array = PanelArray(num_rows_per_panel = 4, ... num_cols_per_panel = 4, ... polarization = 'dual', ... polarization_type = 'VH', ... antenna_pattern = '38.901', ... carrier_frequency = 3.5e9) >>> >>> ut_array = PanelArray(num_rows_per_panel = 1, ... num_cols_per_panel = 1, ... polarization = 'single', ... polarization_type = 'V', ... antenna_pattern = 'omni', ... carrier_frequency = 3.5e9) >>> # Create channel model >>> channel_model = UMi(carrier_frequency = 3.5e9, ... o2i_model = 'low', ... ut_array = ut_array, ... bs_array = bs_array, ... direction = 'uplink') >>> # Generate the topology >>> topology = gen_single_sector_topology_interferers(batch_size = 100, ... num_ut = 4, ... num_interferer = 4, ... scenario = 'umi') >>> # Set the topology >>> ut_loc, bs_loc, ut_orientations, bs_orientations, ut_velocities, in_state = topology >>> channel_model.set_topology(ut_loc, ... bs_loc, ... ut_orientations, ... bs_orientations, ... ut_velocities, ... in_state) >>> channel_model.show_topology() .. image:: ../figures/drop_uts_in_sector_topology_inter.png Input -------- batch_size : int Batch size num_ut : int Number of UTs to sample per batch example num_interferer : int Number of interfeering UTs per batch example scenario : str System leven model scenario. Must be one of "rma", "umi", or "uma". min_bs_ut_dist : None or tf.float Minimum BS-UT distance [m] isd : None or tf.float Inter-site distance [m] bs_height : None or tf.float BS elevation [m] min_ut_height : None or tf.float Minimum UT elevation [m] max_ut_height : None or tf.float Maximum UT elevation [m] indoor_probability : None or tf.float Probability of a UT to be indoor min_ut_velocity : None or tf.float Minimum UT velocity [m/s] max_ut_velocity : None or tf.float Maximim UT velocity [m/s] dtype : tf.DType Datatype to use for internal processing and output. If a complex datatype is provided, the corresponding precision of real components is used. Defaults to `tf.complex64` (`tf.float32`). Output ------ ut_loc : [batch_size, num_ut, 3], tf.float UTs locations. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. bs_loc : [batch_size, 1, 3], tf.float BS location. Set to (0,0,0) for all batch examples. ut_orientations : [batch_size, num_ut, 3], tf.float UTs orientations [radian]. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. bs_orientations : [batch_size, 1, 3], tf.float BS orientation [radian]. Oriented towards the center of the sector. ut_velocities : [batch_size, num_ut, 3], tf.float UTs velocities [m/s]. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfeering UTs. in_state : [batch_size, num_ut], tf.float Indoor/outdoor state of UTs. `True` means indoor, `False` means outdoor. The first ``num_ut`` items along the axis with index 1 correspond to the served UTs, whereas the remaining ``num_interferer`` items correspond to the interfering UTs. """ params = set_3gpp_scenario_parameters( scenario, min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype) min_bs_ut_dist, isd, bs_height, min_ut_height, max_ut_height,\ indoor_probability, min_ut_velocity, max_ut_velocity = params real_dtype = dtype.real_dtype # Setting BS to (0,0,bs_height) bs_loc = tf.stack([ tf.zeros([batch_size, 1], real_dtype), tf.zeros([batch_size, 1], real_dtype), tf.fill( [batch_size, 1], bs_height)], axis=-1) # Setting the BS orientation such that it is downtilted towards the center # of the sector sector_center = (min_bs_ut_dist + 0.5*isd)*0.5 bs_downtilt = 0.5*PI - tf.math.atan(sector_center/bs_height) bs_yaw = tf.constant(PI/3.0, real_dtype) bs_orientation = tf.stack([ tf.fill([batch_size, 1], bs_yaw), tf.fill([batch_size, 1], bs_downtilt), tf.zeros([batch_size, 1], real_dtype)], axis=-1) # Generating the UTs located in the UTs served by the BS ut_topology = generate_uts_topology( batch_size, num_ut, 'sector', tf.zeros([2], real_dtype), min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype) ut_loc, ut_orientations, ut_velocities, in_state = ut_topology ## Generating the UTs located in the adjacent cells # Users are randomly dropped in one of the two adjacent cells inter_cell_center = tf.stack([[0.0, isd], [isd*tf.math.cos(PI/6.0), isd*tf.math.sin(PI/6.0)]], axis=0) cell_index = config.tf_rng.uniform(shape=[batch_size, num_interferer], minval=0, maxval=2, dtype=tf.int32) inter_cells = tf.gather(inter_cell_center, cell_index) inter_topology = generate_uts_topology( batch_size, num_interferer, 'cell', inter_cells, min_bs_ut_dist, isd, min_ut_height, max_ut_height, indoor_probability, min_ut_velocity, max_ut_velocity, dtype) inter_loc, inter_orientations, inter_velocities, inter_in_state \ = inter_topology ut_loc = tf.concat([ut_loc, inter_loc], axis=1) ut_orientations = tf.concat([ut_orientations, inter_orientations], axis=1) ut_velocities = tf.concat([ut_velocities, inter_velocities], axis=1) in_state = tf.concat([in_state, inter_in_state], axis=1) return ut_loc, bs_loc, ut_orientations, bs_orientation, ut_velocities,\ in_state
[docs] def exp_corr_mat(a, n, dtype=tf.complex64): r"""Generate exponential correlation matrices. This function computes for every element :math:`a` of a complex-valued tensor :math:`\mathbf{a}` the corresponding :math:`n\times n` exponential correlation matrix :math:`\mathbf{R}(a,n)`, defined as (Eq. 1, [MAL2018]_): .. math:: \mathbf{R}(a,n)_{i,j} = \begin{cases} 1 & \text{if } i=j\\ a^{i-j} & \text{if } i>j\\ (a^\star)^{j-i} & \text{if } j<i, j=1,\dots,n\\ \end{cases} where :math:`|a|<1` and :math:`\mathbf{R}\in\mathbb{C}^{n\times n}`. Input ----- a : [n_0, ..., n_k], tf.complex A tensor of arbitrary rank whose elements have an absolute value smaller than one. n : int Number of dimensions of the output correlation matrices. dtype : tf.complex64, tf.complex128 The dtype of the output. Output ------ R : [n_0, ..., n_k, n, n], tf.complex A tensor of the same dtype as the input tensor :math:`\mathbf{a}`. """ # Cast to desired output dtype and expand last dimension for broadcasting a = tf.cast(a, dtype=dtype) a = tf.expand_dims(a, -1) # Check that a is valid msg = "The absolute value of the elements of `a` must be smaller than one" tf.debugging.assert_less(tf.abs(a), tf.cast(1, a.dtype.real_dtype), msg) # Vector of exponents, adapt dtype and dimensions for broadcasting exp = tf.range(0, n) exp = tf.cast(exp, dtype=dtype) exp = expand_to_rank(exp, tf.rank(a), 0) # First column of R col = tf.math.pow(a, exp) # For a=0, one needs to remove the resulting nans due to 0**0=nan cond = tf.math.is_nan(tf.math.real(col)) col = tf.where(cond, tf.ones_like(col), col) # First row of R (equal to complex-conjugate of the first column) row = tf.math.conj(col) # Create Toeplitz operator operator = tf.linalg.LinearOperatorToeplitz(col, row) # Generate dense tensor from operator r = operator.to_dense() return r
[docs] def one_ring_corr_mat(phi_deg, num_ant, d_h=0.5, sigma_phi_deg=15, dtype=tf.complex64): r"""Generate covariance matrices from the one-ring model. This function generates approximate covariance matrices for the so-called `one-ring` model (Eq. 2.24) [BHS2017]_. A uniform linear array (ULA) with uniform antenna spacing is assumed. The elements of the covariance matrices are computed as: .. math:: \mathbf{R}_{\ell,m} = \exp\left( j2\pi d_\text{H} (\ell -m)\sin(\varphi) \right) \exp\left( -\frac{\sigma_\varphi^2}{2} \left( 2\pi d_\text{H}(\ell -m)\cos(\varphi) \right)^2 \right) for :math:`\ell,m = 1,\dots, M`, where :math:`M` is the number of antennas, :math:`\varphi` is the angle of arrival, :math:`d_\text{H}` is the antenna spacing in multiples of the wavelength, and :math:`\sigma^2_\varphi` is the angular standard deviation. Input ----- phi_deg : [n_0, ..., n_k], tf.float A tensor of arbitrary rank containing azimuth angles (deg) of arrival. num_ant : int Number of antennas d_h : float Antenna spacing in multiples of the wavelength. Defaults to 0.5. sigma_phi_deg : float Angular standard deviation (deg). Defaults to 15 (deg). Values greater than 15 should not be used as the approximation becomes invalid. dtype : tf.complex64, tf.complex128 The dtype of the output. Output ------ R : [n_0, ..., n_k, num_ant, nun_ant], `dtype` Tensor containing the covariance matrices of the desired dtype. """ if sigma_phi_deg>15: warnings.warn("sigma_phi_deg should be smaller than 15.") # Convert all inputs to radians phi_deg = tf.cast(phi_deg, dtype=dtype.real_dtype) sigma_phi_deg = tf.cast(sigma_phi_deg, dtype=dtype.real_dtype) phi = deg_2_rad(phi_deg) sigma_phi = deg_2_rad(sigma_phi_deg) # Add dimensions for broadcasting phi = tf.expand_dims(phi, -1) sigma_phi = tf.expand_dims(sigma_phi, -1) # Compute first column c = tf.constant(2*PI*d_h, dtype=dtype.real_dtype) d = c*tf.range(0, num_ant, dtype=dtype.real_dtype) d = expand_to_rank(d, tf.rank(phi), 0) a = tf.complex(tf.cast(0, dtype=dtype.real_dtype), d*tf.sin(phi)) exp_a = tf.exp(a) # First exponential term b = -tf.cast(0.5, dtype=dtype.real_dtype)*(sigma_phi*d*tf.cos(phi))**2 exp_b = tf.cast(tf.exp(b), dtype=dtype) # Second exponetial term col = exp_a*exp_b # First column # First row is just the complex conjugate of first column row = tf.math.conj(col) # Create Toeplitz operator operator = tf.linalg.LinearOperatorToeplitz(col, row) # Generate dense tensor from operator r = operator.to_dense() return r