Source code for sionna.rt.coverage_map

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
Class that stores coverage map
"""

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sionna.utils import expand_to_rank, log10
from .utils import rotation_matrix, mitsuba_rectangle_to_world
import warnings

[docs]class CoverageMap: # pylint: disable=line-too-long r""" CoverageMap() Stores the simulated coverage maps A coverage map is generated for the loaded scene for every transmitter using :meth:`~sionna.rt.Scene.coverage_map`. Please refer to the documentation of this function for further details. An instance of this class can be indexed like a tensor of rank three with shape ``[num_tx, num_cells_y, num_cells_x]``, i.e.: .. code-block:: Python cm = scene.coverage_map() print(cm[0]) # prints the coverage map for transmitter 0 print(cm[0,1,2]) # prints the value of the cell (1,2) for transmitter 0 where ``scene`` is the :class:`~sionna.rt.Scene` loaded using :func:`~sionna.rt.load_scene`. Example ------- .. code-block:: Python import sionna from sionna.rt import load_scene, PlanarArray, Transmitter, Receiver scene = load_scene(sionna.rt.scene.munich) # Configure antenna array for all transmitters scene.tx_array = PlanarArray(num_rows=8, num_cols=2, vertical_spacing=0.7, horizontal_spacing=0.5, pattern="tr38901", polarization="VH") # Configure antenna array for all receivers scene.rx_array = PlanarArray(num_rows=1, num_cols=1, vertical_spacing=0.5, horizontal_spacing=0.5, pattern="dipole", polarization="cross") # Add a transmitters tx = Transmitter(name="tx", position=[8.5,21,30], orientation=[0,0,0]) scene.add(tx) tx.look_at([40,80,1.5]) # Compute coverage map cm = scene.coverage_map(max_depth=8) # Show coverage map cm.show() .. figure:: ../figures/coverage_map_show.png :align: center """ def __init__(self, center, orientation, size, cell_size, value, scene, dtype=tf.complex64): self._rdtype = dtype.real_dtype if (tf.rank(center) != 1) or (tf.shape(center)[0] != 3): msg = "`center` must be shaped as [x,y,z] (rank=1 and shape=[3])" raise ValueError(msg) if (tf.rank(orientation) != 1) or (tf.shape(orientation)[0] != 3): msg = "`orientation` must be shaped as [a,b,c]"\ " (rank=1 and shape=[3])" raise ValueError(msg) if (tf.rank(size) != 1) or (tf.shape(size)[0] != 2): msg = "`size` must be shaped as [w,h]"\ " (rank=1 and shape=[2])" raise ValueError(msg) if (tf.rank(cell_size) != 1) or (tf.shape(cell_size)[0] != 2): msg = "`cell_size` must be shaped as [w,h]"\ " (rank=1 and shape=[2])" raise ValueError(msg) num_cells_x = tf.cast(tf.math.ceil(size[0]/cell_size[0]), tf.int32) num_cells_y = tf.cast(tf.math.ceil(size[1]/cell_size[1]), tf.int32) if (tf.rank(value) != 3)\ or (tf.shape(value)[1] != num_cells_y)\ or (tf.shape(value)[2] != num_cells_x): msg = "`value` must have shape"\ " [num_tx, num_cells_y, num_cells_x]" raise ValueError(msg) self._center = tf.cast(center, self._rdtype) self._orientation = tf.cast(orientation, self._rdtype) self._size = tf.cast(size, self._rdtype) self._cell_size = tf.cast(cell_size, self._rdtype) self._value = tf.cast(value, self._rdtype) self._transmitters = scene.transmitters # Dict mapping names to index for transmitters self._tx_name_2_ind = {} for tx_ind, tx_name in enumerate(self._transmitters): self._tx_name_2_ind[tx_name] = tx_ind ############################################################### # Position of the center of the cells in the world # coordinate system ############################################################### # [num_cells_x] x_positions = tf.range(num_cells_x, dtype=self._rdtype) x_positions = (x_positions + 0.5)*self._cell_size[0] # [num_cells_x, num_cells_y] x_positions = tf.expand_dims(x_positions, axis=1) x_positions = tf.tile(x_positions, [1, num_cells_y]) # [num_cells_y] y_positions = tf.range(num_cells_y, dtype=self._rdtype) y_positions = (y_positions + 0.5)*self._cell_size[1] # [num_cells_x, num_cells_y] y_positions = tf.expand_dims(y_positions, axis=0) y_positions = tf.tile(y_positions, [num_cells_x, 1]) # [num_cells_x, num_cells_y, 2] cell_pos = tf.stack([x_positions, y_positions], axis=-1) # Move to global coordinate system # [1, 1, 2] size = expand_to_rank(self._size, tf.rank(cell_pos), 0) # [num_cells_x, num_cells_y, 2] cell_pos = cell_pos - size*0.5 # [num_cells_x, num_cells_y, 3] cell_pos = tf.concat([cell_pos, tf.zeros([num_cells_x, num_cells_y, 1], dtype=self._rdtype)], axis=-1) # [3, 3] rot_cm_2_gcs = rotation_matrix(self._orientation) # [1, 1, 3, 3] rot_cm_2_gcs_ = expand_to_rank(rot_cm_2_gcs, tf.rank(cell_pos)+1, axis=0) # [num_cells_x, num_cells_y, 3] cell_pos = tf.linalg.matvec(rot_cm_2_gcs_, cell_pos) # [num_cells_x, num_cells_y, 3] cell_pos = cell_pos + self._center # [num_cells_y, num_cells_x, 3] cell_pos = tf.transpose(cell_pos, [1,0,2]) self._cell_pos = cell_pos ###################################################################### # Position of the transmitters, receivers, and RIS in the coverage map ###################################################################### # [num_tx/num_rx/num_ris, 3] tx_pos = [tx.position for tx in scene.transmitters.values()] tx_pos = tf.stack(tx_pos, axis=0) rx_pos = [rx.position for rx in scene.receivers.values()] rx_pos = tf.stack(rx_pos, axis=0) if len(rx_pos)==0: rx_pos = tf.zeros([0,3], dtype=self._rdtype) ris_pos = [ris.position for ris in scene.ris.values()] ris_pos = tf.stack(ris_pos, axis=0) if len(ris_pos)==0: ris_pos = tf.zeros([0,3], dtype=self._rdtype) # [num_tx/num_rx/num_ris, 3] center_ = tf.expand_dims(self._center, axis=0) tx_pos = tx_pos - center_ rx_pos = rx_pos - center_ ris_pos = ris_pos - center_ # [3, 3] rot_gcs_2_cm = tf.transpose(rot_cm_2_gcs) # [1, 3, 3] rot_gcs_2_cm_ = tf.expand_dims(rot_gcs_2_cm, axis=0) # Positions in the coverage map system # [num_tx/num_rx/num_ris, 3] tx_pos = tf.linalg.matvec(rot_gcs_2_cm_, tx_pos) rx_pos = tf.linalg.matvec(rot_gcs_2_cm_, rx_pos) ris_pos = tf.linalg.matvec(rot_gcs_2_cm_, ris_pos) # Keep only x and y # [num_tx/num_rx/num_ris, 2] tx_pos = tx_pos[:,:2] rx_pos = rx_pos[:,:2] ris_pos = ris_pos[:,:2] # Using the bottom left corner as origin # [num_tx/num_rx/num_ris, 2] tx_pos = tx_pos + self._size*0.5 rx_pos = rx_pos + self._size*0.5 ris_pos = ris_pos + self._size*0.5 # Quantizing # [num_tx/num_rx/num_ris, 2] tx_pos = tf.cast(tf.math.floor(tx_pos/self._cell_size), tf.int32) rx_pos = tf.cast(tf.math.floor(rx_pos/self._cell_size), tf.int32) ris_pos = tf.cast(tf.math.floor(ris_pos/self._cell_size), tf.int32) self._tx_pos = tx_pos self._rx_pos = rx_pos self._ris_pos = ris_pos @property def center(self): """ [3], tf.float : Get the center of the coverage map """ return self._center @property def orientation(self): """ [3], tf.float : Get the orientation of the coverage map """ return self._orientation @property def size(self): """ [2], tf.float : Get the size of the coverage map """ return self._size @property def cell_size(self): """ [2], tf.float : Get the resolution of the coverage map, i.e., width (in the local X direction) and height (in the local Y direction) in of the cells of the coverage map """ return self._cell_size @property def cell_centers(self): """ [num_cells_y, num_cells_x, 3], tf.float : Get the positions of the centers of the cells in the global coordinate system """ return self._cell_pos @property def num_cells_x(self): """ int : Get the number of cells along the local X-axis """ return self._value.shape[2] @property def num_cells_y(self): """ int : Get the number of cells along the local Y-axis """ return self._value.shape[1] @property def num_tx(self): """ int : Get the number of transmitters """ return self._value.shape[0]
[docs] def as_tensor(self): """ Returns the coverage map as a tensor Output ------ : [num_tx, num_cells_y, num_cells_x], tf.float The coverage map as a tensor """ return self._value
[docs] def show(self, tx=0, vmin=None, vmax=None, show_tx=True, show_rx=False, show_ris=False): r"""show(tx=0, vmin=None, vmax=None, show_tx=True) Visualizes a coverage map The position of the transmitter is indicated by a red "+" marker. The positions of the receivers are indicated by blue "x" markers. The positions of the RIS are indicated by black "*" markers. Input ----- tx : int | str Index or name of the transmitter for which to show the coverage map Defaults to 0. vmin,vmax : float | `None` Define the range of path gains that the colormap covers. If set to `None`, then covers the complete range. Defaults to `None`. show_tx : bool If set to `True`, then the position of the transmitter is shown. Defaults to `True`. show_rx : bool If set to `True`, then the position of the receivers is shown. Defaults to `False`. show_ris : bool If set to `True`, then the position of the RIS is shown. Defaults to `False`. Output ------ : :class:`~matplotlib.pyplot.Figure` Figure showing the coverage map """ if isinstance(tx, int): if tx >= self.num_tx: raise ValueError("Invalid transmitter index") elif isinstance(tx, str): if tx in self._tx_name_2_ind: tx = self._tx_name_2_ind[tx] else: raise ValueError(f"Unknown transmitter with name '{tx}'") else: raise ValueError("Invalid type for `tx`: Must be a string or int") # Catch expected div-by-zero warnings with warnings.catch_warnings(record=True) as _: cm = 10.*np.log10(self[tx].numpy()) # Position of the transmitter # Visualization the coverage map fig = plt.figure() plt.imshow(cm, origin='lower', vmin=vmin, vmax=vmax) plt.colorbar(label='Path gain [dB]') plt.xlabel('Cell index (X-axis)') plt.ylabel('Cell index (Y-axis)') # Visualizing transmitter, receiver, RIS positions if show_tx: tx_pos = self._tx_pos[tx] fig.axes[0].scatter(*tx_pos, marker='P', c='r') if show_rx: for rx_pos in self._rx_pos: fig.axes[0].scatter(*rx_pos, marker='x', c='b') if show_ris: for ris_pos in self._ris_pos: fig.axes[0].scatter(*ris_pos, marker='*', c='k') return fig
[docs] def sample_positions(self, batch_size, tx=0, min_gain_db=None, max_gain_db=None, min_dist=None, max_dist=None, center_pos=False): # pylint: disable=line-too-long r"""Sample random user positions from a coverage map For a given coverage map, ``batch_size`` random positions are sampled such that the *expected* path gain of this position is larger than a given threshold ``min_gain_db`` or smaller than ``max_gain_db``, respectively. Similarly, ``min_dist`` and ``max_dist`` define the minimum and maximum distance of the random positions to the transmitter ``tx``. Note that due to the quantization of the coverage map into cells it is not guaranteed that all above parameters are exactly fulfilled for a returned position. This stems from the fact that every individual cell of the coverage map describes the expected *average* behavior of the surface within this cell. For instance, it may happen that half of the selected cell is shadowed and, thus, no path to the transmitter exists but the average path gain is still larger than the given threshold. Please use ``center_pos`` = `True` to sample only positions from the cell centers. .. figure:: ../figures/cm_user_sampling.png :align: center The above figure shows an example for random positions between 220m and 250m from the transmitter and a ``max_gain_db`` of -100 dB. Keep in mind that the transmitter can have a different height than the coverage map which also contributes to this distance. For example if the transmitter is located 20m above the surface of the coverage map and a ``min_dist`` of 20m is selected, also positions directly below the transmitter are sampled. Input ----- batch_size: int Number of returned random positions min_gain_db: float | None Minimum path gain [dB]. Positions are only sampled from cells where the path gain is larger or equal to this value. Ignored if `None`. Defaults to `None`. max_gain_db: float | None Maximum path gain [dB]. Positions are only sampled from cells where the path gain is smaller or equal to this value. Ignored if `None`. Defaults to `None`. min_dist: float | None Minimum distance [m] from transmitter for all random positions. Ignored if `None`. Defaults to `None`. max_dist: float | None Maximum distance [m] from transmitter for all random positions. Ignored if `None`. Defaults to `None`. tx : int | str Index or name of the transmitter from whose coverage map positions are sampled center_pos: bool If `True`, all returned positions are sampled from the cell center (i.e., the grid of the coverage map). Otherwise, the positions are randomly drawn from the surface of the cell. Defaults to `False`. Output ------ : [batch_size, 3], tf.float Random positions :math:`(x,y,z)` [m] that are in cells fulfilling the above constraints w.r.t. distance and path gain """ if isinstance(tx, int): if tx >= self.num_tx: raise ValueError("Invalid transmitter index") tx_pos = list(self._transmitters.values())[tx].position elif isinstance(tx, str): if tx in self._tx_name_2_ind: tx_pos = self._transmitters[tx].position tx = self._tx_name_2_ind[tx] else: raise ValueError(f"Unknown transmitter with name '{tx}'") else: raise ValueError("Invalid type for `tx`: Must be a string or int") # allow float values for batch_size if not isinstance(batch_size, (int, float)) or not batch_size%1==0: raise ValueError("batch_size must be int.") if min_gain_db is None: min_gain_db = -1. * np.infty min_gain_db = tf.constant(min_gain_db, self._rdtype) if max_gain_db is None: max_gain_db = np.infty max_gain_db = tf.constant(max_gain_db, self._rdtype) if min_gain_db > max_gain_db: raise ValueError("min_gain_db cannot be larger than max_gain_db.") if min_dist is None: min_dist = 0. min_dist = tf.constant(min_dist, self._rdtype) if max_dist is None: max_dist = np.infty max_dist = tf.constant(max_dist, self._rdtype) if min_dist > max_dist: raise ValueError("min_dist cannot be larger than max_dist.") cell_centers = self.cell_centers # Translate cm from lin. to dB scale cm_db = 10.*log10(self._value[tx, :, :]) # Set min and max distance tx_pos = tf.cast(tf.reshape(tx_pos, (1,1,3)), dtype=self._rdtype) d = tf.math.reduce_euclidean_norm(cell_centers - tx_pos, axis=2) cm_inf = tf.constant(-1. * np.infty, shape=(1,1), dtype=self._rdtype) cm_inf = tf.tile(cm_inf, cm_db.shape) cm_db = tf.where(d < min_dist, cm_inf, cm_db) # min dist cm_db = tf.where(d > max_dist, cm_inf, cm_db) # max dist # Get all indices of positions with large enough path_gain idx = tf.where(tf.math.logical_and(cm_db > min_gain_db, cm_db < max_gain_db)) # Duplicate indices if requested batch_size > num_idx # Cast from tf.int32 to tf.float64 to ensure TF2.10-2.12 compatibility # with tf.math.divide_no_nan function reps = tf.math.ceil(tf.math.divide_no_nan( tf.cast(batch_size, tf.float64), tf.cast(idx.shape[0], tf.float64))) reps = tf.cast(tf.expand_dims(reps, axis=0), tf.int32) reps = tf.concat((reps, tf.ones_like(tf.cast(idx.shape[1:],tf.int32))), axis=0) idx = tf.tile(idx, reps) # and repeat positions # Randomly permute indices idx = tf.random.shuffle(idx) # Sample batch_size random positions ue_pos = tf.gather_nd(self.cell_centers, idx[:batch_size]) # Add random offset within cell-size, if positions should not be # centered if not center_pos: # cell can be rotated dir_x = tf.expand_dims(0.5*(cell_centers[0,0] - cell_centers[1,0]), axis=0) dir_y = tf.expand_dims(0.5*(cell_centers[0,0] - cell_centers[0,1]), axis=0) rand_x = tf.random.uniform((batch_size,1), minval=-1., maxval=1., dtype=self._rdtype) rand_y = tf.random.uniform((batch_size,1), minval=-1., maxval=1., dtype=self._rdtype) ue_pos += rand_x * dir_x + rand_y * dir_y return ue_pos
def to_world(self): r""" Returns the `to_world` transformation that maps a default Mitsuba rectangle to the rectangle that defines the coverage map surface Output ------- to_world : :class:`mitsuba.ScalarTransform4f` Rectangle to world transformation """ return mitsuba_rectangle_to_world(self._center, self._orientation, self._size) def __getitem__(self, key): if isinstance(key, str): if key not in self._tx_name_2_ind: raise ValueError(f"Unknown transmitter with name '{key}'") key = self._tx_name_2_ind[key] elif isinstance(key, (tuple, list)) and len(key) > 0: tx = key[0] if isinstance(tx, int): if tx >= self.num_tx: raise ValueError("Invalid transmitter index:"\ f" expected [0..{self.num_tx}], found {tx}") elif isinstance(tx, str): if tx not in self._tx_name_2_ind: raise ValueError(f"Unknown transmitter with name '{tx}'") tx = self._tx_name_2_ind[tx] else: raise ValueError("Invalid type for `tx`:"\ " Must be a string or int") key = type(key)(( tx, *key[1:] )) return self._value[key]