#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
Classes and functions relating to reconfigurable intelligent surfaces
"""
from abc import ABC
from abc import abstractmethod
import tensorflow as tf
import matplotlib.pyplot as plt
from sionna.constants import SPEED_OF_LIGHT
from .radio_device import RadioDevice
from .scene_object import SceneObject
from . import scene
from .utils import rotate, normalize, outer,\
expand_to_rank
[docs]class CellGrid():
# pylint: disable=line-too-long
r"""
Class defining a cell grid that determines the physical structure of a RIS
The cell grid specifies the location of unit cells within the y-z plane
assuming a homogenous spacing of 0.5. The actual positions are computed by
multiplying the cell positions by the wavelength and rotating them
according to the RIS' orientation.
A cell grid must have at least three columns and rows to ensure
that discrete phase and amplitude profiles of the RIS can be interpolated.
Parameters
----------
num_rows : int
Number of rows. Must at least be equal to three.
num_cols : int
Number of columns. Must at least be equal to three.
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
"""
def __init__(self,
num_rows,
num_cols,
dtype=tf.complex64):
if dtype not in (tf.complex64, tf.complex128):
raise ValueError("`dtype` must be tf.complex64 or tf.complex128`")
self._dtype = dtype
self._rdtype = dtype.real_dtype
if num_rows < 3 or num_cols < 3:
raise ValueError("num_rows and num_cols must be >= 3")
self._num_rows = int(num_rows)
self._num_cols = int(num_cols)
self._cell_y_positions = tf.range(self.num_cols, dtype=self._rdtype)
self._cell_y_positions -= tf.cast((self.num_cols-1.)/2., self._rdtype)
self._cell_z_positions = tf.range(self.num_rows-1, -1, -1,
dtype=self._rdtype)
self._cell_z_positions -= tf.cast((self.num_rows-1.)/2., self._rdtype)
z, y = tf.meshgrid(self.cell_z_positions, self.cell_y_positions)
self._cell_positions = tf.stack([tf.reshape(y, [-1]),
tf.reshape(z, [-1])], -1)
@property
def num_rows(self):
r"""
int : Number of rows
"""
return self._num_rows
@property
def num_cols(self):
r"""
int : Number of columns
"""
return self._num_cols
@property
def num_cells(self):
r"""
int : Number of cells
"""
return self.num_rows * self.num_cols
@property
def cell_positions(self):
r"""
[num_cells, 2], tf.float : Cell positions ordered from
top-to-bottom left-to-right
"""
return self._cell_positions
@property
def cell_y_positions(self):
r"""
[num_cols], tf.float : y-coordinates of cells ordered
from left-to-right
"""
return self._cell_y_positions
@property
def cell_z_positions(self):
r"""
[num_rows], tf.float : z-coordinates of cells ordered
from top-to-bottom
"""
return self._cell_z_positions
class Profile(ABC):
# pylint: disable=line-too-long
r"""Abstract class defining a phase/amplitude profile of a RIS
A Profile instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
def __init__(self, dtype=tf.complex64):
if dtype not in (tf.complex64, tf.complex128):
raise ValueError("`dtype` must be tf.complex64 or tf.complex128`")
self._dtype = dtype
self._rdtype = dtype.real_dtype
@property
@abstractmethod
def num_modes(self):
r"""
int : Number of reradiation modes
"""
pass
@abstractmethod
def __call__(self, points, mode=None, return_grads=False):
r"""
Returns the profile values, gradients and Hessians at given points
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
pass
[docs]class AmplitudeProfile(Profile):
# pylint: disable=line-too-long
r"""Abstract class defining an amplitude profile of a RIS
An AmplitudeProfile instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
@property
@abstractmethod
def mode_powers(self):
r"""
[num_modes], tf.float: Relative power of reradiation modes
"""
pass
[docs]class PhaseProfile(Profile):
# pylint: disable=line-too-long
r"""Abstract class defining a phase profile of a RIS
A PhaseProfile instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
pass
class DiscreteProfile(Profile):
# pylint: disable=line-too-long
r"""Class defining a discrete phase/amplitude profile of a RIS
A DiscreteProfile instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
cell_grid : :class:`~sionna.rt.CellGrid`
Defines the physical structure of the RIS
num_modes : int
Number of reradiation modes.
Defaults to 1.
values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
Values of the discrete profile for each reradiation mode
and unit cell. `num_rows` and `num_cols` are defined by the
`cell_grid`.
Defaults to `None`.
interpolator : :class:`~sionna.rt.ProfileInterpolator`
Instance of a `ProfileInterpolator` that interpolates the
discrete values of the profile to a continuous profile
which is defined at any point on the RIS.
Defaults to `None`. In this case, the
:class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
def __init__(self,
cell_grid,
num_modes=1,
values=None,
interpolator=None,
dtype=tf.complex64):
super().__init__(dtype=dtype)
self._cell_grid = cell_grid
self._num_modes = tf.cast(num_modes, tf.int32)
if values is None:
self._values = None
else:
self.values = values
if interpolator is None:
self._interpolator = LagrangeProfileInterpolator(self)
else:
self._interpolator = interpolator
@property
def shape(self):
r"""
tf.TensorShape : Shape of the tensor holding the values of
the discrete profile
"""
return tf.TensorShape([self.num_modes,
self.cell_grid.num_rows,
self.cell_grid.num_cols])
@property
def values(self):
r"""
[shape], tf.float : Set/get the discrete values of the profile for each
reradiation mode
"""
return self._values
@values.setter
def values(self, v):
if not v.shape == self.shape:
raise ValueError(f"`values` must have shape {self.shape}")
if isinstance(v, tf.Variable):
if v.dtype != self._rdtype:
msg = f"`values` must have dtype={self._rdtype}"
raise TypeError(msg)
else:
self._values = v
else:
self._values = tf.cast(v, dtype=self._rdtype)
@property
def num_modes(self):
r"""
int : Number of reradiation modes
"""
return self._num_modes
@property
def cell_grid(self):
r"""
:class:`~sionna.rt.CellGrid` : Defines the physical
structure of the RIS
"""
return self._cell_grid
@property
def spacing(self):
r"""
tf.float: Element spacing [m] corresponding to
half a wavelength
"""
if hasattr(scene.Scene(), "wavelength"):
wavelength = scene.Scene().wavelength
return wavelength/tf.cast(2, self._rdtype)
else:
# Scene is not initialized
return tf.cast(0.5, self._rdtype)
def show(self, mode=0):
r"""Visualizes the profile as a 3D plot
Input
------
mode : int | `None`
Reradation mode to be shown.
Defaults to 0.
Output
------
: :class:`matplotlib.pyplot.Figure`
3D plot of the profile
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
y, z = tf.meshgrid(self.cell_grid.cell_y_positions*self.spacing,
self.cell_grid.cell_z_positions*self.spacing)
ax.plot_surface(y, z, self.values[mode], cmap='viridis')
ax.set_xlabel("y")
ax.set_ylabel("z")
if isinstance(self, PhaseProfile):
plt.title(r"Phase profile $\chi(y, z)$")
if isinstance(self, AmplitudeProfile):
plt.title(r"Amplitude profile $A(y, z)$")
return fig
def __call__(self, points=None, mode=None, return_grads=False):
r"""
Returns the profile values, gradients and Hessians at given points
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned. Only available if `points` is not `None`.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
if points is None:
if mode is not None:
values = tf.transpose(self.values[mode])
values = tf.reshape(values, [-1])
else:
values = tf.transpose(self.values, perm=[0,2,1])
values = tf.reshape(values, [self.num_modes, -1])
return values
else:
return self._interpolator(points, mode, return_grads)
[docs]class ProfileInterpolator(ABC):
r"""
Abstract class defining an interpolator of a discrete profile
A ProfileInterpolator instance is a callable that interpolate
the discrete profile to specified points. Optionally, the
gradients and Hessians are returned.
Parameters
----------
discrete_profile : :class:`~sionna.rt.DiscreteProfile`
Discrete profile to be interpolated
Input
-----
points : [num_samples, 2], tf.float
Positions at which to interpolate the profile
mode : int | `None`
Mode of the profile to interpolate. If `None`.
all modes are interpolated.
Defaults to `None`.
return_grads : bool
If `True`, gradients and Hessians are computed.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions
hessians : [num_modes, num_samples, 3, 3] or [num_samples,3,3], tf.float
Hessians of the interpolated profile values
at the sample positions
"""
def __init__(self, discrete_profile):
self._discrete_profile = discrete_profile
self._dtype = discrete_profile._dtype
self._rdtype = discrete_profile._rdtype
@property
def spacing(self):
r"""
tf.float: Element spacing [m] corresponding to
half a wavelength
"""
if hasattr(scene.Scene(), "wavelength"):
wavelength = scene.Scene().wavelength
return wavelength/tf.cast(2, self._rdtype)
else:
# Scene is not initialized
return tf.cast(0.5, self._rdtype)
@property
def cell_y_positions(self):
r"""
[num_cols], tf.float : y-coordinates of cells ordered
from left-to-right
"""
return self._discrete_profile.cell_grid.cell_y_positions*self.spacing
@property
def cell_z_positions(self):
r"""
[num_rows], tf.float : z-coordinates of cells ordered
from top-to-bottom
"""
return self._discrete_profile.cell_grid.cell_z_positions*self.spacing
@property
def num_rows(self):
r"""
int : Number of rows
"""
return self._discrete_profile.cell_grid.num_rows
@property
def num_cols(self):
r"""
int : Number of columns
"""
return self._discrete_profile.cell_grid.num_cols
@property
def values(self):
r"""
[shape], tf.float : Discrete values of the profile for each
reradiation mode and unit cell
"""
return self._discrete_profile.values
@abstractmethod
def __call__(self, points, mode=None, return_grads=False):
r"""
Interpolates the discrete profile to specified points
Optionally, the gradients and Hessians are returned.
Input
-----
points : [num_samples, 2], tf.float
Positions at which to interpolate the profile
mode : int | `None`
Mode of the profile to interpolate. If `None`.
all modes are interpolated.
Defaults to `None`.
return_grads : bool
If `True`, gradients and Hessians are computed.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions
hessians : [num_modes, num_samples, 3, 3] or [num_samples,3,3], tf.float
Hessians of the interpolated profile values
at the sample positions
"""
pass
[docs]class LagrangeProfileInterpolator(ProfileInterpolator):
# pylint: disable=line-too-long
r"""
Class defining a :class:`~sionna.rt.ProfileInterpolator` using Lagrange polynomials
The class instance is a callable that interpolates a discrete profile
at arbitrary positions using two-dimensional 2nd-order Lagrange interpolation.
A discrete profile :math:`P(y_i,z_j)\in\mathbb{R}` defined on
a grid of points :math:`y_i,z_j` for :math:`i,j \in [1,2,3]` is
interpolated to position :math:`y,z` as
.. math::
\begin{align}
P(y,z) &= \sum_{i,j} P(y_i,z_j) \ell_{i,y}(y) \ell_{j,z}(z)
\end{align}
where :math:`\ell_{i,y}(y)`, :math:`\ell_{j,z}(z)` are the
one-dimensional 2nd-order Lagrange polynomials, defined
as
.. math::
\begin{align}
\ell_{i,y}(y) &= \prod_{j \ne i} \frac{y-y_j}{y_i-y_j} \\
\ell_{j,z}(z) &= \prod_{i \ne j} \frac{z-z_i}{z_j-z_i}.
\end{align}
Note that the formulation above assumes for simplicity only a 3x3 grid
of points. However, the implementation finds for every
position the closest 3x3 grid points of the discrete profile
which are used for interpolation.
In order to compute spatial gradients and Hessians, we extend the the profile
with a dummy :math:`x` dimension, i.e., :math:`P(x,y,z)=P(y,z)`, such that
.. math::
\begin{align}
\nabla P(x,y,z) &= \begin{bmatrix} 0, \frac{\partial P(x,y,z)}{\partial y}, \frac{\partial P(x,y,z)}{\partial z} \end{bmatrix}^{\textsf{T}}\\
H_P(x,y,z) &= \begin{bmatrix} 0 & 0 & 0 \\
0 & \frac{\partial^2 P(x,y,z)}{\partial y^2} & \frac{\partial^2 P(x,y,z)}{\partial y \partial z} \\
0 & \frac{\partial^2 P(x,y,z)}{\partial z \partial y} & \frac{\partial^2 P(x,y,z)}{\partial z^2}
\end{bmatrix}
\end{align}.
Parameters
----------
discrete_profile : :class:`~sionna.rt.DiscreteProfile`
Discrete profile to be interpolated
Input
-----
points : [num_samples, 2], tf.float
Positions at which to interpolate the profile
mode : int | `None`
Mode of the profile to interpolate. If `None`,
all modes are interpolated.
Defaults to `None`.
return_grads : bool
If `True`, gradients and Hessians are computed.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions
"""
[docs] @staticmethod
def lagrange_polynomials(x,
x_i,
return_derivatives=True):
# pylint: disable=line-too-long
r"""
Compute the 2nd-order Lagrange polynomials
Optionally, the first- and second-order derivatives are returned.
The 2nd-order Lagrange polynomials :math:`\ell_j(x)`, :math:`j=1,2,3`,
for position :math:`x\in\mathbb{R}` are computed using three distinct
support positions :math:`x_i` for :math:`i=1,2,3`:
.. math::
\begin{align}
\ell_j(x) &= \prod_{\substack{1\leq i \leq 3 \\ i \ne j}} \frac{x-x_i}{x_j-x_i}.
\end{align}
Their first- and second-order derivatives are then respectively given as
.. math::
\begin{align}
\ell'_j(x) &= \left(\sum_{i \ne j} x-x_i\right) \left(\prod_{i \ne j} x_j-x_i\right)^{-1} \\
\ell''_j(x) &= 2 \left(\prod_{i \ne j} x_j-x_i\right)^{-1}.
\end{align}
Input
-----
x : [batch_size], tf.float
Sample positions
x_i : [batch_size, 3], tf.float
Support positions for every sample position
return_derivatives : bool
If `True`, also the first- and second-order derivatives
of the Lagrange polynomials are returned.
Defaults to `True`.
Output
------
l_i : [batch_size, 3], tf.float
Lagrange polynomials for each sample position
deriv_1st : [batch_size, 3], tf.float
First-order derivatives for each sample position.
Only returned if `return_derivatives` is `True`.
deriv_2nd : [batch_size, 3], tf.float
Second-order derivatives for each sample position.
Only returned if `return_derivatives` is `True`.
"""
# Compute products of differences of the sample and support points
sample_diff = tf.expand_dims(x, 1) - x_i
sample_prod_0 = sample_diff[:,1]*sample_diff[:,2]
sample_prod_1 = sample_diff[:,0]*sample_diff[:,2]
sample_prod_2 = sample_diff[:,0]*sample_diff[:,1]
sample_prods = tf.stack([sample_prod_0, sample_prod_1, sample_prod_2],
-1)
# Compute products of differences of support points
support_diffs = tf.expand_dims(x_i, -1) - tf.expand_dims(x_i, -2)
support_diffs = tf.where(support_diffs==0, 1., support_diffs)
support_prods = tf.reduce_prod(support_diffs, axis=-1)
# Compute Lagrange polynomials
lagrange = sample_prods/support_prods
if not return_derivatives:
return lagrange
else:
# Compute sums of differences
sample_sum_0 = sample_diff[:,1] + sample_diff[:,2]
sample_sum_1 = sample_diff[:,0] + sample_diff[:,2]
sample_sum_2 = sample_diff[:,0] + sample_diff[:,1]
sample_sums = tf.stack([sample_sum_0, sample_sum_1, sample_sum_2],
-1)
# Compute first-order derivatives
deriv_1st = sample_sums/support_prods
# Compute second-order derivatives
deriv_2nd = tf.cast(2, support_prods.dtype)/support_prods
return lagrange, deriv_1st, deriv_2nd
def __call__(self, points, mode=None, return_grads=False):
# pylint: disable=line-too-long
r"""
Interpolates a discrete profile at arbitrary position via
2D 2nd-order Lagrange interpolation.
A discrete profile :math:`P(y_i,z_j)\in\mathbb{R}` defined on
a grid of points :math:`y_i,z_j` for :math:`i,j \in [1,2,3]` is
interpolated to position :math:`y,z` as
.. math::
\begin{align}
P(y,z) &= \sum_{i,j} P(y_i,z_j) \ell_{i,y}(y) \ell_{j,z}(z)
\end{align}
where :math:`\ell_{i,y}(y)`, :math:`\ell_{j,z}(z)` are the
one-dimensional 2nd-order Lagrange polynomials, defined
as
.. math::
\begin{align}
\ell_{i,y}(y) &= \prod_{j \ne i} \frac{y-y_j}{y_i-y_j} \\
\ell_{j,z}(z) &= \prod_{i \ne j} \frac{z-z_i}{z_j-z_i}.
\end{align}
In order to compute spatial gradients and Hessians, we extend the the profile
with a dummy :math:`x` dimension, i.e., :math:`P(x,y,z)=P(y,z)`, such that
.. math::
\begin{align}
\nabla P(x,y,z) &= \begin{bmatrix} 0, \frac{\partial P(x,y,z)}{\partial y}, \frac{\partial P(x,y,z)}{\partial z} \end{bmatrix}^{\textsf{T}}\\
H_P(x,y,z) &= \begin{bmatrix} 0 & 0 & 0 \\
0 & \frac{\partial^2 P(x,y,z)}{\partial y^2} & \frac{\partial^2 P(x,y,z)}{\partial y \partial z} \\
0 & \frac{\partial^2 P(x,y,z)}{\partial z \partial y} & \frac{\partial^2 P(x,y,z)}{\partial z^2}
\end{bmatrix}
\end{align}.
Input
-----
points : [num_samples, 2], tf.float
Positions at which to interpolate the profile
mode : int | `None`
Mode of the profile to interpolate. If `None`,
all modes are interpolated.
Defaults to `None`.
return_grads : bool
If `True`, gradients and Hessians are computed.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions
"""
num_samples = tf.shape(points)[0]
# Compute absolute distances in y/z directions
y_dist = tf.abs(tf.expand_dims(points[:,0], axis=1)
- tf.expand_dims(self.cell_y_positions, axis=0))
z_dist = tf.abs(tf.expand_dims(points[:,1], axis=1)
- tf.expand_dims(self.cell_z_positions, axis=0))
# Compute indices of three closest support points
y_ind = tf.sort(tf.math.top_k(-y_dist, k=3, sorted=False)[1], -1)
z_ind = tf.sort(tf.math.top_k(-z_dist, k=3, sorted=False)[1], -1)
# Get support points in y and z dimensions
y_i = tf.gather(self.cell_y_positions, y_ind, axis=0, batch_dims=1)
z_i = tf.gather(self.cell_z_positions, z_ind, axis=0, batch_dims=1)
# Compute indices of all support points
support_ind = tf.reshape(tf.expand_dims(z_ind, 1)
+ tf.expand_dims(y_ind, 2)*self.num_rows,
[num_samples, -1])
# Compute support values for all modes
vals = tf.transpose(self.values, perm=[2, 1, 0])
if mode is not None:
# Filter relevant mode
vals = tf.expand_dims(vals[...,mode], -1)
num_modes = tf.shape(vals)[-1]
vals = tf.reshape(vals, [-1, num_modes])
support_values = tf.gather(vals, support_ind, axis=0, batch_dims=1)
support_values = tf.transpose(support_values, perm=[2,0,1])
if not return_grads:
# Compute Lagrange polynomials
l_y = self.lagrange_polynomials(points[:,0], y_i, False)
l_z = self.lagrange_polynomials(points[:,1], z_i, False)
l_z_y = tf.reshape(tf.expand_dims(l_y, axis=-1)
* tf.expand_dims(l_z, axis=-2),
[num_samples, -1])
# Compute interpolated values
values = tf.reduce_sum(support_values*l_z_y, axis=-1)
return tf.squeeze(values)
# Compute Lagrange polynomials and derivatives
l_y, d1_y, d2_y = self.lagrange_polynomials(points[:,0], y_i, True)
l_z, d1_z, d2_z = self.lagrange_polynomials(points[:,1], z_i, True)
l_z_y = tf.reshape(tf.expand_dims(l_y, axis=-1)
* tf.expand_dims(l_z, axis=-2),
[num_samples, -1])
# Compute interpolated values
values = tf.reduce_sum(support_values*l_z_y, axis=-1)
# Compute gradients
l_z_d_y = tf.reshape(tf.expand_dims(d1_y, axis=-1)
* tf.expand_dims(l_z, axis=-2),
[num_samples, -1])
d_values_dy = tf.reduce_sum(support_values*l_z_d_y, axis=-1)
l_d_z_y = tf.reshape(tf.expand_dims(l_y, axis=-1)
* tf.expand_dims(d1_z, axis=-2),
[num_samples, -1])
d_values_dz = tf.reduce_sum(support_values*l_d_z_y, axis=-1)
grads = tf.stack([tf.zeros_like(d_values_dy),
d_values_dy,
d_values_dz ], -1)
# Compute Hessians
# 1: Compute 2nd-order partial derivatives
l_z_d2_y = tf.reshape(tf.expand_dims(d2_y, axis=-1)
* tf.expand_dims(l_z, axis=-2),
[num_samples, -1])
d2_values_d2_y = tf.reduce_sum(support_values*l_z_d2_y, axis=-1)
l_d2_z_y = tf.reshape(tf.expand_dims(l_y, axis=-1)
* tf.expand_dims(d2_z, axis=-2),
[num_samples, -1])
d2_values_d2_z = tf.reduce_sum(support_values*l_d2_z_y, axis=-1)
l_d_z_d_y = tf.reshape(tf.expand_dims(d1_y, axis=-1)
* tf.expand_dims(d1_z, axis=-2),
[num_samples, -1])
d2_values_d_y_d_z = tf.reduce_sum(support_values*l_d_z_d_y, axis=-1)
# 2: Construct rows of the Hessians
row_2 = tf.stack([tf.zeros_like(d2_values_d2_y),
d2_values_d2_y,
d2_values_d_y_d_z], -1)
row_3 = tf.stack([tf.zeros_like(d2_values_d2_z),
d2_values_d_y_d_z,
d2_values_d2_z], -1)
row_1 = tf.zeros_like(row_2)
# 3: Combine rows full Hessian matrices
hessians = tf.stack([row_1, row_2, row_3], axis=2)
return (values, grads, hessians)
[docs]class DiscreteAmplitudeProfile(DiscreteProfile, AmplitudeProfile):
# pylint: disable=line-too-long
r"""Class defining a discrete amplitude profile of a RIS
A discrete amplitude profile :math:`A_m` assigns to
each of its units cells a possibly different amplitude value.
Multiple reradiation modes can be obtained by super-positioning
of profiles. The relative power of reradiation modes can
be controlled via the reradiation coefficients :math:`p_m`.
See :ref:`ris_primer` for more details.
A class instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
cell_grid : :class:`~sionna.rt.CellGrid`
Defines the physical structure of the RIS
num_modes : int
Number of reradiation modes.
Defaults to 1.
values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
Amplitude values for each reradiation mode
and unit cell. `num_rows` and `num_cols` are defined by the
`cell_grid`.
Defaults to `None`.
mode_powers : tf.float, [num_modes]
Relative powers or reradition coefficients of reradiation modes.
Defaults to `None`. In this case, all reradiation modes get
an equal fraction of the total power.
interpolator : :class:`~sionna.rt.ProfileInterpolator`
Determines how the discrete values of the profile
are interpolated to a continuous profile
which is defined at any point on the RIS.
Defaults to `None`. In this case, the
:class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
def __init__(self,
cell_grid,
num_modes=1,
values=None,
mode_powers=None,
interpolator=None,
dtype=tf.complex64):
super().__init__(cell_grid=cell_grid,
num_modes=num_modes,
values=values,
interpolator=interpolator,
dtype=dtype)
if values is None:
self.values = tf.ones(self.shape, self._rdtype)
if mode_powers is None:
mode_powers = 1/tf.cast(self.num_modes, self._rdtype) * \
tf.ones([self.num_modes], dtype=self._rdtype)
self.mode_powers = mode_powers
@property
def mode_powers(self):
return self._mode_powers
@mode_powers.setter
def mode_powers(self, v):
if isinstance(v, tf.Variable):
if v.dtype != self._rdtype:
msg = f"`mode_powers` must have dtype={self._rdtype}"
raise TypeError(msg)
else:
v = tf.cast(v, dtype=self._rdtype)
if not v.shape==[self.num_modes]:
msg = f"`mode_powers` must have shape [{self.num_modes}]"
raise ValueError(msg)
self._mode_powers = v
[docs]class DiscretePhaseProfile(DiscreteProfile, PhaseProfile):
# pylint: disable=line-too-long
r"""Class defining a discrete phase profile of a RIS
A discrete phase profile :math:`\chi_m` assigns to
each of its units cells a possibly different phase value.
Multiple reradiation modes can be created by super-positioning
of phase profiles.
See :ref:`ris_primer` in the Primer on Electromagnetics for more details.
A class instance is a callable that returns the profile values,
gradients and Hessians at given points.
Parameters
----------
cell_grid : :class:`~sionna.rt.CellGrid`
Defines the physical structure of the RIS
num_modes : int
Number of reradiation modes.
Defaults to 1.
values : tf.float or tf.Variable, [num_modes, num_rows, num_cols]
Phase values [rad] for each reradiation mode
and unit cell. `num_rows` and `num_cols` are defined by the
`cell_grid`.
Defaults to `None`.
interpolator : :class:`~sionna.rt.ProfileInterpolator`
Determines how the discrete values of the profile
are interpolated to a continuous profile
which is defined at any point on the RIS.
Defaults to `None`. In this case, the
:class:`~sionna.rt.LagrangeProfileInterpolator` will be used.
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
values : [num_modes, num_samples] or [num_samples], tf.float
Interpolated profile values at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
def __init__(self,
cell_grid,
num_modes=1,
values=None,
interpolator=None,
dtype=tf.complex64):
super().__init__(cell_grid=cell_grid,
num_modes=num_modes,
values=values,
interpolator=interpolator,
dtype=dtype)
if values is None:
self.values = tf.zeros(self.shape, self._rdtype)
[docs]class RIS(RadioDevice, SceneObject):
# pylint: disable=line-too-long
r"""
Class defining a reconfigurable intelligent surface (RIS)
A RIS consists of a planar arrangement of unit cells
with :math:`\lambda/2` spacing.
It's :class:`~sionna.rt.PhaseProfile` :math:`\chi_m` and
:class:`~sionna.rt.AmplitudeProfile` :math:`A_m` can be
configured after the RIS is instantiated. Both together
define the spatial modulation coefficient :math:`\Gamma` which
determines how the RIS reflects electro-magnetic waves.
See :ref:`ris_primer` in the Primer on Electromagnetics for
more details or have a look at the `tutorial notebook <https://nvlabs.github.io/sionna/examples/Sionna_Ray_Tracing_RIS.html>`_.
An RIS instance is a callable that computes the spatial modulation coefficient
and gradients/Hessians of the underlying phase profile for provided
points on the RIS' surface.
Parameters
----------
name : str
Name
position : [3], float
Position :math:`(x,y,z)` as three-dimensional vector
num_rows : int
Number of rows. Must at least be equal to three.
num_cols : int
Number of columns. Must at least be equal to three.
num_modes : int
Number of reradiation modes.
Defaults to 1.
orientation : [3], float
Orientation :math:`(\alpha, \beta, \gamma)` specified
through three angles corresponding to a 3D rotation
as defined in :eq:`rotation`.
This parameter is ignored if ``look_at`` is not `None`.
Defaults to [0,0,0]. In this case, the normal vector of
the RIS points towards the positive x-axis.
velocity : [3], float
Velocity vector [m/s]. Used for the computation of
path-specific Doppler shifts.
look_at : [3], float | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | `None`
A position or the instance of a :class:`~sionna.rt.Transmitter`,
:class:`~sionna.rt.Receiver`, :class:`~sionna.rt.RIS`, or :class:`~sionna.rt.Camera` to look at.
If set to `None`, then ``orientation`` is used to orientate the device.
color : [3], float
Defines the RGB (red, green, blue) ``color`` parameter for the device as displayed in the previewer and renderer.
Each RGB component must have a value within the range :math:`\in [0,1]`.
Defaults to `[0.862,0.078,0.235]`.
dtype : tf.complex
Datatype to be used in internal calculations.
Defaults to `tf.complex64`.
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the spatial modulation profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
gamma : [num_modes, num_samples] or [num_samples], tf.complex
Spatial modulation coefficient at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated phase profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated phase profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
def __init__(self,
name,
position,
num_rows,
num_cols,
num_modes=1,
orientation=(0.,0.,0.),
velocity=(0.,0.,0.),
look_at=None,
color=(0.862,0.078,0.235),
dtype=tf.complex64):
# Initialize the parent classes
# RadioDevice and SceneObject inherit from Object
# Python will initialize in the following order:
# RadioDevice->SceneObject->Object
super().__init__(name=name,
position=position,
orientation=orientation,
look_at=look_at,
radio_material=None,
color=color,
dtype=dtype)
# Set velocity vector
self.velocity = tf.cast(velocity, dtype=dtype.real_dtype)
if num_rows < 3 or num_cols < 3:
raise ValueError("num_rows and num_cols must be >= 3")
# Set immutable properties
self._num_modes = int(num_modes)
self._cell_grid = CellGrid(num_rows, num_cols, self._dtype)
# Init amplitude profile
self.amplitude_profile = DiscreteAmplitudeProfile(self.cell_grid,
num_modes=self.num_modes,
dtype=self._dtype)
# Init phase profile
self.phase_profile = DiscretePhaseProfile(self.cell_grid,
num_modes=self.num_modes,
dtype=self._dtype)
@property
def cell_grid(self):
r"""
:class:`~sionna.rt.CellGrid` : Defines the physical
structure of the RIS
"""
return self._cell_grid
@property
def cell_positions(self):
r"""
[num_cells, 2], tf.float : Cell positions in the
local coordinate system (LCS) of the RIS, ordered
from top-to-bottom left-to-right.
"""
return self.cell_grid.cell_positions*self.spacing
@property
def cell_world_positions(self):
r"""
[num_cells, 3], tf.float : Cell positions in the
global coordinate system (GCS) of the RIS, ordered
from top-to-bottom left-to-right.
"""
x_coord = tf.zeros([self.num_cells, 1], self._rdtype)
pos = tf.concat([x_coord, self.cell_positions], axis=-1)
pos = rotate(pos, self.orientation)
pos += tf.expand_dims(self.position, 0)
return pos
@property
def world_normal(self):
r"""
[3], tf.float : Normal vector of the RIS in the
global coordinate system (GCS)
"""
n_hat = tf.constant([1,0,0], self._rdtype)
return rotate(n_hat, self.orientation)
@property
def num_rows(self):
r"""
int : Number of rows
"""
return self.cell_grid.num_rows
@property
def num_cols(self):
r"""
int : Number of columns
"""
return self.cell_grid.num_cols
@property
def num_cells(self):
r"""
int : Number of cells
"""
return self.num_rows*self.num_cols
@property
def num_modes(self):
r"""
int : Number of reradiation modes
"""
return self._num_modes
@property
def spacing(self):
r"""
tf.float: Element spacing [m] corresponding to
half a wavelength
"""
if hasattr(scene.Scene(), "wavelength"):
wavelength = scene.Scene().wavelength
return wavelength/tf.cast(2, self._rdtype)
else:
# Scene is not initialized
return tf.cast(0.5, self._rdtype)
@property
def size(self):
"""
[2], tf.float : Size of the RIS (width, height) [m]
"""
return tf.stack([self.spacing * self.num_cols,
self.spacing * self.num_rows], axis=0)
@property
def velocity(self):
"""
[3], tf.float : Get/set the velocity vector [m/s]
"""
return self._velocity
@velocity.setter
def velocity(self, v):
if not tf.shape(v)==3:
raise ValueError("`velocity` must have shape [3]")
self._velocity = tf.cast(v, self._dtype.real_dtype)
@property
def amplitude_profile(self):
r"""
:class:`~sionna.rt.AmplitudeProfile` : Set/get amplitude profile
"""
return self._amplitude_profile
@amplitude_profile.setter
def amplitude_profile(self, v):
if not isinstance(v, AmplitudeProfile):
raise ValueError("Not a valid AmplitudeProfile")
self._amplitude_profile = v
@property
def phase_profile(self):
r"""
:class:`~sionna.rt.PhaseProfile` : Set/get phase profile
"""
return self._phase_profile
@phase_profile.setter
def phase_profile(self, v):
if not isinstance(v, PhaseProfile):
raise ValueError("Not a valid PhaseProfile")
self._phase_profile = v
[docs] def phase_gradient_reflector(self, sources, targets):
# pylint: disable=line-too-long
r"""
Configures the RIS as ideal phase gradient reflector
For an incoming direction :math:`\hat{\mathbf{k}}_i`
and desired outgoing direction :math:`\hat{\mathbf{k}}_r`,
the necessary phase gradient along the RIS with normal
:math:`\hat{\mathbf{n}}` can be computed as
(e.g., Eq.(12) [Vitucci24]_):
.. math::
\nabla\chi_m = -k_0\left( \mathbf{I}- \hat{\mathbf{n}}\hat{\mathbf{n}}^\textsf{T} \right) \left(\hat{\mathbf{k}}_i - \hat{\mathbf{k}}_r \right).
The phase profile is obtained by assigning zero phase to the first
unit cell and evolving the other phases linearly according to the gradient
across the entire RIS.
Multiple reradiation modes can be configured.
The amplitude profile is set to one everywhere with a uniform relative
power allocation across modes.
Input
-----
sources : tf.float, [3] or [num_modes, 3]
Tensor defining for every reradiation mode
a source from which the incoming wave originates.
targets : tf.float, [3] or [num_modes, 3]
Tensor defining for every reradiation mode
a target towards which the incoming wave should be
reflected.
"""
# Convert inputs to tensors
sources = tf.cast(sources, self._rdtype)
targets = tf.cast(targets, self._rdtype)
sources = expand_to_rank(sources, 2, 0)
targets = expand_to_rank(targets, 2, 0)
shape = [self.num_modes, 3]
# Ensure the desired shape [num_modes, 3]
for i, x in enumerate([sources, targets]):
if not (tf.shape(x)==shape).numpy().all():
msg = f"Wrong shape of input {i+1}. " + \
f"Expected {shape}, got {x.shape}"
raise ValueError(msg)
# Compute incoming and outgoing directions
# [num_modes, 3]
k_i, _ = normalize(self.position[tf.newaxis] - sources)
k_r, _ = normalize(targets - self.position[tf.newaxis])
# Tangent projection operator - Eq.(10)
# [1, 3]
normal = self.world_normal[tf.newaxis]
# [1, 3, 3]
p = tf.eye(3, dtype=self._rdtype) - outer(normal,normal)
# Compute phase gradient - Eq.(12)
# [num_modes, 3]
grad = self.scene.wavenumber * tf.linalg.matvec(p, k_i-k_r)
# Rotate phase gradient to LCS of the RIS and keep y/z components
# [num_modes, 1, 1, 2]
grad = rotate(grad, self.orientation, inverse=True)[:,1:]
grad = tf.reshape(grad, [self.num_modes, 1, 1, 2])
# Using the top-left cell as reference, compute the offsets
# [1, num_rows, num_cols, 2]
offsets = self.cell_positions - self.cell_positions[:1]
offsets = tf.reshape(offsets, [self.num_cols, self.num_rows, 2])
offsets = tf.transpose(offsets, perm=[1,0,2])
offsets = tf.expand_dims(offsets, 0)
# Compute phase profile based on the constant gradient assumption
# [num_modes, num_rows, num_cols]
phases = tf.reduce_sum(offsets*grad, axis=-1)
self.phase_profile.values = phases
# Set a neutral amplitude profile
self.amplitude_profile.values = tf.ones_like(phases)
mode_powers = 1/tf.cast(self.num_modes, self._rdtype) * \
tf.ones([self.num_modes], dtype=self._rdtype)
self.amplitude_profile.mode_powers = mode_powers
[docs] def focusing_lens(self, sources, targets):
# pylint: disable=line-too-long
r"""
Configures the RIS as focusing lens
The phase profile is configured in such a way that
the fields of all rays add up coherently at a specific
point. In other words, the phase profile undoes the
distance-based phase shift of every ray connecting a
source to a target via a specific unit cell.
For a source and target at positions
:math:`\mathbf{s}` and :math:`\mathbf{t}`, the phase
:math:`\chi_m(\mathbf{x})` of a unit cell located at :math:`\mathbf{x}`
is computed as (e.g., Sec. IV-2 [Degli-Esposti22]_)
.. math::
\chi_m(\mathbf{x}) = k_0 \left(\lVert\mathbf{s}-\mathbf{x}\rVert + \lVert\mathbf{s}-\mathbf{t}\rVert\right).
Multiple reradiation modes can be configured.
The amplitude profile is set to one everywhere with a uniform relative
power allocation across modes.
Input
-----
sources : tf.float, [3] or [num_modes, 3]
Tensor defining for every reradiation mode
a source from which the incoming wave originates.
targets : tf.float, [3] or [num_modes, 3]
Tensor defining for every reradiation mode
a target towards which the incoming wave should be
reflected.
"""
# Convert inputs to tensors
sources = tf.cast(sources, self._rdtype)
targets = tf.cast(targets, self._rdtype)
sources = expand_to_rank(sources, 2, 0)
targets = expand_to_rank(targets, 2, 0)
shape = [self.num_modes, 3]
# Ensure the desired shape [num_modes, 3]
for i, x in enumerate([sources, targets]):
if not (tf.shape(x)==shape).numpy().all():
msg = f"Wrong shape of input {i+1}. " + \
f"Expected {shape}, got {x.shape}"
raise ValueError(msg)
# Compute incoming and outgoing distances
# [num_modes, num_cells]
d_i = normalize(self.cell_world_positions[tf.newaxis] - sources[:,tf.newaxis])[1]
d_o = normalize(self.cell_world_positions[tf.newaxis] - targets[:,tf.newaxis])[1]
# Compute phases such that the total phase shifts for all cells
# are equal
phases = self.scene.wavenumber * (d_i+d_o)
phases = tf.reshape(phases, [self.num_modes, self.num_cols, self.num_rows])
phases = tf.transpose(phases, perm=[0,2,1])
self.phase_profile.values = phases
# Set a neutral amplitude profile
self.amplitude_profile.values = tf.ones_like(phases)
mode_powers = 1/tf.cast(self.num_modes, self._rdtype) * \
tf.ones([self.num_modes], dtype=self._rdtype)
self.amplitude_profile.mode_powers = mode_powers
def __call__(self, points=None, mode=None, return_grads=False):
# pylint: disable=line-too-long
r"""
Computes the spatial modulation coefficient and gradients/Hessians of phase profile
Input
-----
points : tf.float, [num_samples, 2]
Tensor of 2D coordinates defining the points on the RIS at which
the spatial modulation profile should be evaluated.
Defaults to `None`. In this case, the values for all unit cells
are returned.
mode : int | `None`
Reradiation mode to be considered.
Defaults to `None`. In this case, the values for all modes
are returned.
return_grads : bool
If `True`, also the first- and second-order derivatives are
returned.
Defaults to `False`.
Output
------
gamma : [num_modes, num_samples] or [num_samples], tf.complex
Spatial modulation coefficient at the sample positions
grads : [num_modes, num_samples, 3] or [num_samples, 3], tf.float
Gradients of the interpolated phase profile values
at the sample positions. Only returned if `return_grads` is `True`.
hessians : [num_modes, num_samples, 3, 3] or [num_samples, 3, 3] , tf.float
Hessians of the interpolated phase profile values
at the sample positions. Only returned if `return_grads` is `True`.
"""
# Get amplitudes
a = self.amplitude_profile(points, mode)
# Get mode powers
p = self.amplitude_profile.mode_powers
# Get phases and (optionally) phase gradients and Hessians
if return_grads and points is not None:
chi, grads, hessians = self.phase_profile(points, mode, True)
else:
chi = self.phase_profile(points, mode, False)
# Compute spatial modulation coefficient
zero = tf.cast(0, self._rdtype)
gamma = tf.complex(a, zero)
chi = tf.complex(zero, chi)
p = tf.complex(tf.sqrt(p), zero)
gamma *= tf.exp(chi)
if mode is None:
gamma*= tf.reshape(p, [-1, 1])
else:
gamma *= p[mode]
if return_grads and points is not None:
return gamma, grads, hessians
else:
return gamma