Source code for sionna.rt.scene_object

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
Class representing objects in the scene
"""
import tensorflow as tf

from .object import Object
from .radio_material import RadioMaterial
import drjit as dr
import mitsuba as mi
from .utils import mi_to_tf_tensor, angles_to_mitsuba_rotation, normalize,\
    theta_phi_from_unit_vec
from sionna.constants import PI


[docs]class SceneObject(Object): # pylint: disable=line-too-long r""" SceneObject() Every object in the scene is implemented by an instance of this class """ def __init__(self, name, object_id=None, mi_shape=None, radio_material=None, orientation=(0,0,0), dtype=tf.complex64, **kwargs): if dtype not in (tf.complex64, tf.complex128): raise ValueError("`dtype` must be tf.complex64 or tf.complex128`") self._dtype = dtype self._rdtype = dtype.real_dtype # Orientation of the object is initialized to (0,0,0) self._orientation = tf.cast(orientation, dtype=self._rdtype) # Initialize the base class Object super().__init__(name, **kwargs) # Set the radio material self.radio_material = radio_material # Set the object id self.object_id = object_id # Set the Mitsuba shape self._mi_shape = mi_shape # Set velocity vector self.velocity = tf.cast([0,0,0], dtype=self._rdtype) if self._dtype == tf.complex64: self._mi_point_t = mi.Point3f self._mi_vec_t = mi.Vector3f self._mi_scalar_t = mi.Float self._mi_transform_t = mi.Transform4f else: self._mi_point_t = mi.Point3d self._mi_vec_t = mi.Vector3d self._mi_scalar_t = mi.Float64 self._mi_transform_t = mi.Transform4d @property def object_id(self): r""" int : Get/set the identifier of this object """ return self._object_id @object_id.setter def object_id(self, v): self._object_id = v @property def radio_material(self): r""" :class:`~sionna.rt.RadioMaterial` : Get/set the radio material of the object. Setting can be done by using either an instance of :class:`~sionna.rt.RadioMaterial` or the material name (`str`). If the radio material is not part of the scene, it will be added. This can raise an error if a different radio material with the same name was already added to the scene. """ return self._radio_material @radio_material.setter def radio_material(self, mat): # Note: _radio_material is set at __init__, but pylint doesn't see it. if mat is None: mat_obj = None elif isinstance(mat, str): mat_obj = self.scene.get(mat) if (mat_obj is None) or (not isinstance(mat_obj, RadioMaterial)): err_msg = f"Unknown radio material '{mat}'" raise TypeError(err_msg) elif not isinstance(mat, RadioMaterial): err_msg = ("The material must be a material name (str) or an " "instance of RadioMaterial") raise TypeError(err_msg) else: mat_obj = mat # Remove the object from the set of the currently used material, if any # pylint: disable=access-member-before-definition if hasattr(self, '_radio_material') and self._radio_material: self._radio_material.discard_object_using(self.object_id) # Assign the new material # pylint: disable=access-member-before-definition self._radio_material = mat_obj # If the radio material is set to None, we can stop here # pylint: disable=access-member-before-definition if not self._radio_material: return # Add the object to the set of the newly used material # pylint: disable=access-member-before-definition self._radio_material.add_object_using(self.object_id) # Add the RadioMaterial to the scene if not already done self.scene.add(self._radio_material) @property def velocity(self): """ [3], tf.float : Get/set the velocity vector [m/s] """ return self._velocity @velocity.setter def velocity(self, v): if not tf.shape(v)==3: raise ValueError("`velocity` must have shape [3]") self._velocity = tf.cast(v, self._rdtype) @property def position(self): """ [3], tf.float : Get/set the position vector [m] of the center of the object. The center is defined as the object's axis-aligned bounding box (AABB). """ dr.sync_thread() rdtype = self._scene.dtype.real_dtype # Bounding box # [3] bbox_min = tf.cast(self._mi_shape.bbox().min, rdtype) # [3] bbox_max = tf.cast(self._mi_shape.bbox().max, rdtype) # [3] half = tf.cast(0.5, self._rdtype) position = half*(bbox_min + bbox_max) return position @position.setter def position(self, new_position): ## Update Mitsuba vertices # Scene parameters scene_params = self._scene.mi_scene_params # Real dtype rdtype = self._scene.dtype.real_dtype new_position = tf.cast(new_position, rdtype) # [num_vertices*3] vertices = scene_params[f'mesh-{self.name}.vertex_positions'] # [num_vertices,3] vertices = mi_to_tf_tensor(vertices, rdtype) vertices = tf.reshape(vertices, [-1, 3]) # [3] position = self.position # [3] translation_vector = new_position - position # [1,3] translation_vector = tf.expand_dims(translation_vector, axis=0) # [num_vertices,3] translated_vertices = vertices + translation_vector # Cast to Mitsuba type to object the Mitsuba scene fltn_translated_vertices = tf.reshape(translated_vertices, [-1]) fltn_translated_vertices = self._mi_scalar_t(fltn_translated_vertices) # scene_params[f'mesh-{self.name}.vertex_positions'] =\ fltn_translated_vertices scene_params.update() ## Update Sionna vertices obj_id = self.object_id mi_shape = self._mi_shape solver_paths = self._scene.solver_paths shape_ind = solver_paths.shape_indices[obj_id] prim_offset = solver_paths.prim_offsets[shape_ind] face_indices3 = mi_shape.face_indices(dr.arange(mi.UInt32, mi_shape.face_count())) # Flatten. This is required for calling vertex_position # [n_prims*3] face_indices = dr.ravel(face_indices3) # Get vertices coordinates # [n_prims*3, 3] vertex_coords = mi_shape.vertex_position(face_indices) # Cast to TensorFlow type # [n_prims*3, 3] vertex_coords = mi_to_tf_tensor(vertex_coords, rdtype) # Unflatten # [n_prims, vertices per triangle : 3, 3] vertex_coords = tf.reshape(vertex_coords, [mi_shape.face_count(), 3, 3]) # Update the tensor storing the primitive vertices sl = tf.range(prim_offset, prim_offset + mi_shape.face_count(), dtype=tf.int32) sl = tf.expand_dims(sl, axis=1) solver_paths.primitives.scatter_nd_update(sl, vertex_coords) ## Update Sionna wedges wedges_objects = solver_paths.wedges_objects wedges_origin = solver_paths.wedges_origin # Indices of the wedges corresponding to this object # [num_wedges] wedges_ind, _ = tf.unique(tf.where(wedges_objects == obj_id)[:,0]) # Corresponding origins # [num_wedges, 3] wedges_origin = tf.gather(wedges_origin, wedges_ind, axis=0) # Translates the wedges # [num_wedges, 3] wedges_origin += translation_vector # Updates the wedges wedges_ind = tf.expand_dims(wedges_ind, axis=1) solver_paths.wedges_origin.scatter_nd_update(wedges_ind, wedges_origin) # Trigger scene callback self._scene.scene_geometry_updated() @property def orientation(self): r""" [3], tf.float : Get/set the orientation :math:`(\alpha, \beta, \gamma)` [rad] specified through three angles corresponding to a 3D rotation as defined in :eq:`rotation`. """ return self._orientation @orientation.setter def orientation(self, new_orient): # Real dtype new_orient = tf.cast(new_orient, self._rdtype) # Build the transformtation corresponding to the new rotation new_rotation = angles_to_mitsuba_rotation(new_orient) # Invert the current orientation cur_rotation = angles_to_mitsuba_rotation(self._orientation.numpy()) inv_cur_rotation = cur_rotation.inverse() # Build the transform. # The object is first translated to the origin, then rotated, then # translated back to its current position transform = ( self._mi_transform_t.translate(self.position.numpy())
[docs] @ new_rotation @ inv_cur_rotation @ self._mi_transform_t.translate(-self.position.numpy()) ) ## Update Mitsuba vertices # Scene parameters scene_params = self._scene.mi_scene_params # [num_vertices*3] vertices = scene_params[f'mesh-{self.name}.vertex_positions'] # [num_vertices,3] vertices = dr.unravel(self._mi_point_t, vertices) # Apply the transform vertices = transform.transform_affine(vertices) # Cast to Mitsuba type to object the Mitsuba scene fltn_vertices = tf.reshape(vertices, [-1]) fltn_vertices = tf.cast(fltn_vertices, tf.float32) scene_params[f'mesh-{self.name}.vertex_positions'] = fltn_vertices scene_params.update() ## Update Sionna vertices obj_id = self.object_id mi_shape = self._mi_shape solver_paths = self._scene.solver_paths shape_ind = solver_paths.shape_indices[obj_id] prim_offset = solver_paths.prim_offsets[shape_ind] face_indices3 = mi_shape.face_indices(dr.arange(mi.UInt32, mi_shape.face_count())) # Flatten. This is required for calling vertex_position # [n_prims*3] face_indices = dr.ravel(face_indices3) # Get vertices coordinates # [n_prims*3, 3] vertex_coords = mi_shape.vertex_position(face_indices) # Cast to TensorFlow type # [n_prims*3, 3] vertex_coords = mi_to_tf_tensor(vertex_coords, self._rdtype) # Unflatten # [n_prims, vertices per triangle : 3, 3] vertex_coords = tf.reshape(vertex_coords, [mi_shape.face_count(), 3, 3]) # Update the tensor storing the primitive vertices sl = tf.range(prim_offset, prim_offset + mi_shape.face_count(), dtype=tf.int32) sl = tf.expand_dims(sl, axis=1) solver_paths.primitives.scatter_nd_update(sl, vertex_coords) ## Update Sionna normals # Get vertices coordinates # [n_prims, 3] normals = solver_paths.normals.gather_nd(sl) # Cast to Mitsuba Vector # [n_prims, 3] normals = self._mi_vec_t(normals) # Rotate the normals normals = transform.transform_affine(normals) # Cast to Tensorflow type # [n_prims, 3] normals = mi_to_tf_tensor(normals, self._rdtype) # Update the tensor storing the primitive vertices solver_paths.normals.scatter_nd_update(sl, normals) ## Update Sionna wedges wedges_objects = solver_paths.wedges_objects wedges_origin = solver_paths.wedges_origin wedges_e_hat = solver_paths.wedges_e_hat wedges_normals = solver_paths.wedges_normals # Indices of the wedges corresponding to this object # [num_wedges] wedges_ind, _ = tf.unique(tf.where(wedges_objects == obj_id)[:,0]) # Corresponding origins, e_hat, and normals # [num_wedges, 3] wedges_origin = tf.gather(wedges_origin, wedges_ind, axis=0) # [num_wedges, 3] wedges_e_hat = tf.gather(wedges_e_hat, wedges_ind, axis=0) # [num_wedges, 3] wedges_normals = tf.gather(wedges_normals, wedges_ind, axis=0) # [num_wedges*2, 3] wedges_normals = tf.reshape(wedges_normals, [-1, 3]) # Cast to Mitsuba types # [num_wedges, 3] wedges_origin = self._mi_point_t(wedges_origin) # [num_wedges, 3] wedges_e_hat = self._mi_vec_t(wedges_e_hat) # [num_wedges*2, 3] wedges_normals = self._mi_vec_t(wedges_normals) # Rotate all quantities # [num_wedges, 3] wedges_origin = transform.transform_affine(wedges_origin) # [num_wedges, 3] wedges_e_hat = transform.transform_affine(wedges_e_hat) # [num_wedges*2, 3] wedges_normals = transform.transform_affine(wedges_normals) # Cast to Tensorflow type # [num_wedges, 3] wedges_origin = mi_to_tf_tensor(wedges_origin, self._rdtype) # [num_wedges, 3] wedges_e_hat = mi_to_tf_tensor(wedges_e_hat, self._rdtype) # [num_wedges*2, 3] wedges_normals = mi_to_tf_tensor(wedges_normals, self._rdtype) # [num_wedges, 2, 3] wedges_normals = tf.reshape(wedges_normals, [-1, 2, 3]) # Updates the wedges wedges_ind = tf.expand_dims(wedges_ind, axis=1) solver_paths.wedges_origin.scatter_nd_update(wedges_ind, wedges_origin) solver_paths.wedges_e_hat.scatter_nd_update(wedges_ind, wedges_e_hat) solver_paths.wedges_normals.scatter_nd_update(wedges_ind, wedges_normals) self._orientation = new_orient # Trigger scene callback self._scene.scene_geometry_updated() def look_at(self, target): # pylint: disable=line-too-long r""" Sets the orientation so that the x-axis points toward an ``Object``. Input ----- target : [3], float | :class:`sionna.rt.Object` | str A position or the name or instance of an :class:`sionna.rt.Object` in the scene to point toward to """ # Get position to look at if isinstance(target, str): obj = self.scene.get(target) if not isinstance(obj, Object): raise ValueError(f"No camera, device, or object named '{target}' found.") else: target = obj.position elif isinstance(target, Object): target = target.position else: target = tf.cast(target, dtype=self._rdtype) if not target.shape[0]==3: raise ValueError("`target` must be a three-element vector)") # Compute angles relative to LCS x = target - self.position x, _ = normalize(x) theta, phi = theta_phi_from_unit_vec(x) alpha = phi # Rotation around z-axis beta = theta-PI/2 # Rotation around y-axis gamma = 0.0 # Rotation around x-axis self.orientation = (alpha, beta, gamma)