Source code for sionna.rt.utils

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
Ray tracer utilities
"""

import tensorflow as tf
import mitsuba as mi
import drjit as dr

from sionna.utils import expand_to_rank
from sionna import PI

[docs]def rotation_matrix(angles): r""" Computes rotation matrices as defined in :eq:`rotation` The closed-form expression in (7.1-4) [TR38901]_ is used. Input ------ angles : [...,3], tf.float Angles for the rotations [rad]. The last dimension corresponds to the angles :math:`(\alpha,\beta,\gamma)` that define rotations about the axes :math:`(z, y, x)`, respectively. Output ------- : [...,3,3], tf.float Rotation matrices """ a = angles[...,0] b = angles[...,1] c = angles[...,2] cos_a = tf.cos(a) cos_b = tf.cos(b) cos_c = tf.cos(c) sin_a = tf.sin(a) sin_b = tf.sin(b) sin_c = tf.sin(c) r_11 = cos_a*cos_b r_12 = cos_a*sin_b*sin_c - sin_a*cos_c r_13 = cos_a*sin_b*cos_c + sin_a*sin_c r_1 = tf.stack([r_11, r_12, r_13], axis=-1) r_21 = sin_a*cos_b r_22 = sin_a*sin_b*sin_c + cos_a*cos_c r_23 = sin_a*sin_b*cos_c - cos_a*sin_c r_2 = tf.stack([r_21, r_22, r_23], axis=-1) r_31 = -sin_b r_32 = cos_b*sin_c r_33 = cos_b*cos_c r_3 = tf.stack([r_31, r_32, r_33], axis=-1) rot_mat = tf.stack([r_1, r_2, r_3], axis=-2) return rot_mat
[docs]def rotate(p, angles, inverse=False): r""" Rotates points ``p`` by the ``angles`` according to the 3D rotation defined in :eq:`rotation` Input ----- p : [...,3], tf.float Points to rotate angles : [..., 3] Angles for the rotations [rad]. The last dimension corresponds to the angles :math:`(\alpha,\beta,\gamma)` that define rotations about the axes :math:`(z, y, x)`, respectively. inverse : bool If `True`, the inverse rotation is applied, i.e., the transpose of the rotation matrix is used. Defaults to `False` Output ------ : [...,3] Rotated points ``p`` """ # Rotation matrix # [..., 3, 3] rot_mat = rotation_matrix(angles) rot_mat = expand_to_rank(rot_mat, tf.rank(p)+1, 0) # Rotation around ``center`` # [..., 3] rot_p = tf.linalg.matvec(rot_mat, p, transpose_a=inverse) return rot_p
[docs]def theta_phi_from_unit_vec(v): r""" Computes zenith and azimuth angles (:math:`\theta,\varphi`) from unit-norm vectors as described in :eq:`theta_phi` Input ------ v : [...,3], tf.float Tensor with unit-norm vectors in the last dimension Output ------- theta : [...], tf.float Zenith angles :math:`\theta` phi : [...], tf.float Azimuth angles :math:`\varphi` """ x = v[...,0] y = v[...,1] z = v[...,2] # If v = z, then x = 0 and y = 0. In this case, atan2 is not differentiable, # leading to NaN when computing the gradients. # The following lines force x to one this case. Note that this does not # impact the output meaningfully, as in that case theta = 0 and phi can # take any value. zero = tf.zeros_like(x) is_unit_z = tf.logical_and(tf.equal(x, zero), tf.equal(y, zero)) is_unit_z = tf.cast(is_unit_z, x.dtype) x += is_unit_z theta = acos_diff(z) phi = tf.math.atan2(y, x) return theta, phi
[docs]def r_hat(theta, phi): r""" Computes the spherical unit vetor :math:`\hat{\mathbf{r}}(\theta, \phi)` as defined in :eq:`spherical_vecs` Input ------- theta : arbitrary shape, tf.float Zenith angles :math:`\theta` [rad] phi : same shape as ``theta``, tf.float Azimuth angles :math:`\varphi` [rad] Output -------- rho_hat : ``phi.shape`` + [3], tf.float Vector :math:`\hat{\mathbf{r}}(\theta, \phi)` on unit sphere """ rho_hat = tf.stack([tf.sin(theta)*tf.cos(phi), tf.sin(theta)*tf.sin(phi), tf.cos(theta)], axis=-1) return rho_hat
[docs]def theta_hat(theta, phi): r""" Computes the spherical unit vector :math:`\hat{\boldsymbol{\theta}}(\theta, \varphi)` as defined in :eq:`spherical_vecs` Input ------- theta : arbitrary shape, tf.float Zenith angles :math:`\theta` [rad] phi : same shape as ``theta``, tf.float Azimuth angles :math:`\varphi` [rad] Output -------- theta_hat : ``phi.shape`` + [3], tf.float Vector :math:`\hat{\boldsymbol{\theta}}(\theta, \varphi)` """ x = tf.cos(theta)*tf.cos(phi) y = tf.cos(theta)*tf.sin(phi) z = -tf.sin(theta) return tf.stack([x,y,z], -1)
[docs]def phi_hat(phi): r""" Computes the spherical unit vector :math:`\hat{\boldsymbol{\varphi}}(\theta, \varphi)` as defined in :eq:`spherical_vecs` Input ------- phi : same shape as ``theta``, tf.float Azimuth angles :math:`\varphi` [rad] Output -------- theta_hat : ``phi.shape`` + [3], tf.float Vector :math:`\hat{\boldsymbol{\varphi}}(\theta, \varphi)` """ x = -tf.sin(phi) y = tf.cos(phi) z = tf.zeros_like(x) return tf.stack([x,y,z], -1)
[docs]def cross(u, v): r""" Computes the cross (or vector) product between u and v Input ------ u : [...,3] First vector v : [...,3] Second vector Output ------- : [...,3] Cross product between ``u`` and ``v`` """ u_x = u[...,0] u_y = u[...,1] u_z = u[...,2] v_x = v[...,0] v_y = v[...,1] v_z = v[...,2] w = tf.stack([u_y*v_z - u_z*v_y, u_z*v_x - u_x*v_z, u_x*v_y - u_y*v_x], axis=-1) return w
[docs]def dot(u, v, keepdim=False, clip=False): r""" Computes and the dot (or scalar) product between u and v Input ------ u : [...,3] First vector v : [...,3] Second vector keepdim : bool If `True`, keep the last dimension. Defaults to `False`. clip : bool If `True`, clip output to [-1,1]. Defaults to `False`. Output ------- : [...,1] or [...] Dot product between ``u`` and ``v``. The last dimension is removed if ``keepdim`` is set to `False`. """ res = tf.reduce_sum(u*v, axis=-1, keepdims=keepdim) if clip: one = tf.ones((), u.dtype) res = tf.clip_by_value(res, -one, one) return res
[docs]def outer(u,v): r""" Computes the outer product between u and v Input ------ u : [...,3] First vector v : [...,3] Second vector Output ------- : [...,3,3] Outer product between ``u`` and ``v`` """ return u[...,tf.newaxis] * v[...,tf.newaxis,:]
[docs]def normalize(v): r""" Normalizes ``v`` to unit norm Input ------ v : [...,3], tf.float Vector Output ------- : [...,3], tf.float Normalized vector : [...], tf.float Norm of the unnormalized vector """ norm = tf.norm(v, axis=-1, keepdims=True) n_v = tf.math.divide_no_nan(v, norm) norm = tf.squeeze(norm, axis=-1) return n_v, norm
def moller_trumbore(o, d, p0, p1, p2, epsilon): r""" Computes the intersection between a ray ``ray`` and a triangle defined by its vertices ``p0``, ``p1``, and ``p2`` using the Moller–Trumbore intersection algorithm. Input ----- o, d: [..., 3], tf.float Ray origin and direction. The direction `d` must be a unit vector. p0, p1, p2: [..., 3], tf.float Vertices defining the triangle epsilon : (), tf.float Small value used to avoid errors due to numerical precision Output ------- t : [...], tf.float Position along the ray from the origin at which the intersection occurs (if any) hit : [...], bool `True` if the ray intersects the triangle. `False` otherwise. """ rdtype = o.dtype zero = tf.cast(0.0, rdtype) one = tf.ones((), rdtype) # [..., 3] e1 = p1 - p0 e2 = p2 - p0 # [...,3] pvec = cross(d, e2) # [...,1] det = dot(e1, pvec, keepdim=True) # If the ray is parallel to the triangle, then det = 0. hit = tf.greater(tf.abs(det), zero) # [...,3] tvec = o - p0 # [...,1] u = tf.math.divide_no_nan(dot(tvec, pvec, keepdim=True), det) # [...,1] hit = tf.logical_and(hit, tf.logical_and(tf.greater_equal(u, -epsilon), tf.less_equal(u, one + epsilon))) # [..., 3] qvec = cross(tvec, e1) # [...,1] v = tf.math.divide_no_nan(dot(d, qvec, keepdim=True), det) # [..., 1] hit = tf.logical_and(hit, tf.logical_and(tf.greater_equal(v, -epsilon), tf.less_equal(u + v, one + epsilon))) # [..., 1] t = tf.math.divide_no_nan(dot(e2, qvec, keepdim=True), det) # [..., 1] hit = tf.logical_and(hit, tf.greater_equal(t, epsilon)) # [...] t = tf.squeeze(t, axis=-1) hit = tf.squeeze(hit, axis=-1) return t, hit def component_transform(e_s, e_p, e_i_s, e_i_p): """ Compute basis change matrix for reflections Input ----- e_s : [..., 3], tf.float Source unit vector for S polarization e_p : [..., 3], tf.float Source unit vector for P polarization e_i_s : [..., 3], tf.float Target unit vector for S polarization e_i_p : [..., 3], tf.float Target unit vector for P polarization Output ------- r : [..., 2, 2], tf.float Change of basis matrix for going from (e_s, e_p) to (e_i_s, e_i_p) """ r_11 = dot(e_i_s, e_s) r_12 = dot(e_i_s, e_p) r_21 = dot(e_i_p, e_s) r_22 = dot(e_i_p, e_p) r1 = tf.stack([r_11, r_12], axis=-1) r2 = tf.stack([r_21, r_22], axis=-1) r = tf.stack([r1, r2], axis=-2) return r def mi_to_tf_tensor(mi_tensor, dtype): """ Get a TensorFlow eager tensor from a Mitsuba/DrJIT tensor """ dr.eval(mi_tensor) dr.sync_thread() # When there is only one input, the .tf() methods crashes. # The following hack takes care of this corner case if dr.shape(mi_tensor)[-1] == 1: mi_tensor = dr.repeat(mi_tensor, 2) tf_tensor = tf.cast(mi_tensor.tf(), dtype)[:1] else: tf_tensor = tf.cast(mi_tensor.tf(), dtype) return tf_tensor def gen_orthogonal_vector(k, epsilon): """ Generate an arbitrary vector that is orthogonal to ``k``. Input ------ k : [..., 3], tf.float Vector epsilon : (), tf.float Small value used to avoid errors due to numerical precision Output ------- : [..., 3], tf.float Vector orthogonal to ``k`` """ rdtype = k.dtype ex = tf.cast([1.0, 0.0, 0.0], rdtype) ex = expand_to_rank(ex, tf.rank(k), 0) ey = tf.cast([0.0, 1.0, 0.0], rdtype) ey = expand_to_rank(ey, tf.rank(k), 0) n1 = cross(k, ex) n1_norm = tf.norm(n1, axis=-1, keepdims=True) n2 = cross(k, ey) return tf.where(tf.greater(n1_norm, epsilon), n1, n2) def compute_field_unit_vectors(k_i, k_r, n, epsilon, return_e_r=True): """ Compute unit vector parallel and orthogonal to incident plane Input ------ k_i : [..., 3], tf.float Direction of arrival k_r : [..., 3], tf.float Direction of reflection n : [..., 3], tf.float Surface normal epsilon : (), tf.float Small value used to avoid errors due to numerical precision return_e_r : bool If `False`, only ``e_i_s`` and ``e_i_p`` are returned. Output ------ e_i_s : [..., 3], tf.float Incident unit field vector for S polarization e_i_p : [..., 3], tf.float Incident unit field vector for P polarization e_r_s : [..., 3], tf.float Reflection unit field vector for S polarization. Only returned if ``return_e_r`` is `True`. e_r_p : [..., 3], tf.float Reflection unit field vector for P polarization Only returned if ``return_e_r`` is `True`. """ e_i_s = cross(k_i, n) e_i_s_norm = tf.norm(e_i_s, axis=-1, keepdims=True) # In case of normal incidence, the incidence plan is not uniquely # define and the Fresnel coefficent is the same for both polarization # (up to a sign flip for the parallel component due to the definition of # polarization). # It is required to detect such scenarios and define an arbitrary valid # e_i_s to fix an incidence plane, as the result from previous # computation leads to e_i_s = 0. e_i_s = tf.where(tf.greater(e_i_s_norm, epsilon), e_i_s, gen_orthogonal_vector(n, epsilon)) e_i_s,_ = normalize(e_i_s) e_i_p,_ = normalize(cross(e_i_s, k_i)) if not return_e_r: return e_i_s, e_i_p else: e_r_s = e_i_s e_r_p,_ = normalize(cross(e_r_s, k_r)) return e_i_s, e_i_p, e_r_s, e_r_p def reflection_coefficient(eta, cos_theta): """ Compute simplified reflection coefficients Input ------ eta : Any shape, tf.complex Complex relative permittivity cos_theta : Same as ``eta``, tf.float Cosine of the incident angle Output ------- r_te : Same as input, tf.complex Fresnel reflection coefficient for S direction r_tm : Same as input, tf.complex Fresnel reflection coefficient for P direction """ cos_theta = tf.complex(cos_theta, tf.zeros_like(cos_theta)) # Fresnel equations a = cos_theta b = tf.sqrt(eta-1.+cos_theta**2) r_te = tf.math.divide_no_nan(a-b, a+b) c = eta*a d = b r_tm = tf.math.divide_no_nan(c-d, c+d) return r_te, r_tm def paths_to_segments(paths): """ Extract the segments corresponding to a set of ``paths`` Input ----- paths : :class:`~sionna.rt.Paths` A set of paths Output ------- starts, ends : [n,3], float Endpoints of the segments making the paths. """ vertices = paths.vertices.numpy() objects = paths.objects.numpy() mask = paths.targets_sources_mask sources, targets = paths.sources.numpy(), paths.targets.numpy() # Emit directly two lists of the beginnings and endings of line segments starts = [] ends = [] for rx in range(vertices.shape[1]): # For each receiver for tx in range(vertices.shape[2]): # For each transmitter for p in range(vertices.shape[3]): # For each path depth if not mask[rx, tx, p]: continue start = sources[tx] i = 0 while ( (i < objects.shape[0]) and (objects[i, rx, tx, p] != -1) ): end = vertices[i, rx, tx, p] starts.append(start) ends.append(end) start = end i += 1 # Explicitly add the path endpoint starts.append(start) ends.append(targets[rx]) return starts, ends def scene_scale(scene): bbox = scene.mi_scene.bbox() tx_positions, rx_positions, ris_positions = {}, {}, {} devices = ((scene.transmitters, tx_positions), (scene.receivers, rx_positions), (scene.ris, ris_positions) ) for source, destination in devices: for k, rd in source.items(): p = rd.position.numpy() bbox.expand(p) destination[k] = p sc = 2. * bbox.bounding_sphere().radius return sc, tx_positions, rx_positions, ris_positions, bbox def fibonacci_lattice(num_points, dtype=tf.float32): """ Generates a Fibonacci lattice for the unit square Input ----- num_points : int Number of points type : tf.DType Datatype to use for the output Output ------- points : [num_points, 2] Generated rectangular coordinates of the lattice points """ golden_ratio = (1.+tf.sqrt(tf.cast(5., tf.float64)))/2. ns = tf.range(0, num_points, dtype=tf.float64) x = ns/golden_ratio x = x - tf.floor(x) y = ns/(num_points-1) points = tf.stack([x,y], axis=1) points = tf.cast(points, dtype) return points def cot(x): """ Cotangens function Input ------ x : [...], tf.float Output ------- : [...], tf.float Cotangent of x """ return tf.math.divide_no_nan(tf.ones_like(x), tf.math.tan(x)) def sign(x): """ Returns +1 if ``x`` is non-negative, -1 otherwise Input ------ x : [...], tf.float A real-valued number Output ------- : [...], tf.float +1 if ``x`` is non-negative, -1 otherwise """ two = tf.cast(2, x.dtype) one = tf.cast(1, x.dtype) return two*tf.cast(tf.greater_equal(x, 0), x.dtype)-one
[docs]def rot_mat_from_unit_vecs(a, b): r""" Computes Rodrigues` rotation formula :eq:`rodrigues_matrix` Input ------ a : [...,3], tf.float First unit vector b : [...,3], tf.float Second unit vector Output ------- : [...,3,3], tf.float Rodrigues' rotation matrix """ rdtype = a.dtype # Compute rotation axis vector k, _ = normalize(cross(a, b)) # Deal with special case where a and b are parallel o = gen_orthogonal_vector(a, 1e-6) k = tf.where(tf.reduce_sum(tf.abs(k), axis=-1, keepdims=True)==0, o, k) # Compute K matrix shape = tf.concat([tf.shape(k)[:-1],[1]], axis=-1) zeros = tf.zeros(shape, rdtype) kx, ky, kz = tf.split(k, 3, axis=-1) l1 = tf.concat([zeros, -kz, ky], axis=-1) l2 = tf.concat([kz, zeros, -kx], axis=-1) l3 = tf.concat([-ky, kx, zeros], axis=-1) k_mat = tf.stack([l1, l2, l3], axis=-2) # Assemble full rotation matrix eye = tf.eye(3, batch_shape=tf.shape(k)[:-1], dtype=rdtype) cos_theta = dot(a, b, clip=True) sin_theta = tf.sin(acos_diff(cos_theta)) cos_theta = expand_to_rank(cos_theta, tf.rank(eye), axis=-1) sin_theta = expand_to_rank(sin_theta, tf.rank(eye), axis=-1) rot_mat = eye + k_mat*sin_theta + \ tf.linalg.matmul(k_mat, k_mat) * (1-cos_theta) return rot_mat
[docs]def sample_points_on_hemisphere(normals, num_samples=1): # pylint: disable=line-too-long r""" Randomly sample points on hemispheres defined by their normal vectors Input ----- normals : [batch_size, 3], tf.float Normal vectors defining hemispheres num_samples : int Number of random samples to draw for each hemisphere defined by its normal vector. Defaults to 1. Output ------ points : [batch_size, num_samples, 3], tf.float or [batch_size, 3], tf.float if num_samples=1. Random points on the hemispheres """ dtype = normals.dtype batch_size = tf.shape(normals)[0] shape = [batch_size, num_samples] # Sample phi uniformly distributed on [0,2*PI] phi = tf.random.uniform(shape, maxval=2*PI, dtype=dtype) # Generate samples of theta for uniform distribution on the hemisphere u = tf.random.uniform(shape, maxval=1, dtype=dtype) theta = tf.acos(u) # Transform spherical to Cartesian coordinates points = r_hat(theta, phi) # Compute rotation matrices z_hat = tf.constant([[0,0,1]], dtype=dtype) z_hat = tf.broadcast_to(z_hat, tf.shape(normals)) rot_mat = rot_mat_from_unit_vecs(z_hat, normals) rot_mat = tf.expand_dims(rot_mat, axis=1) # Compute rotated points points = tf.linalg.matvec(rot_mat, points) # Numerical errors can cause sampling from the other hemisphere. # Correct the sampled vector to avoid sampling in the wrong hemisphere. normals = tf.expand_dims(normals, axis=1) s = dot(points, normals, keepdim=True) s = tf.where(s < 0., s, 0.) points = points - 2.*s*normals if num_samples==1: points = tf.squeeze(points, axis=1) return points
def acos_diff(x, epsilon=1e-7): r""" Implementation of arccos(x) that avoids evaluating the gradient at x -1 or 1 by using straight through estimation, i.e., in the forward pass, x is clipped to (-1, 1), but in the backward pass, x is clipped to (-1 + epsilon, 1 - epsilon). Input ------ x : any shape, tf.float Value at which to evaluate arccos epsilon : tf.float Small backoff to avoid evaluating the gradient at -1 or 1. Defaults to 1e-7. Output ------- : same shape as x, tf.float arccos(x) """ x_clip_1 = tf.clip_by_value(x, -1., 1.) x_clip_2 = tf.clip_by_value(x, -1. + epsilon, 1. - epsilon) eps = tf.stop_gradient(x - x_clip_2) x_1 = x - eps acos_x_1 = tf.acos(x_1) y = acos_x_1 + tf.stop_gradient(tf.acos(x_clip_1)-acos_x_1) return y def angles_to_mitsuba_rotation(angles): """ Build a Mitsuba transform from angles in radian Input ------ angles : [3], tf.float Angles [rad] Output ------- : :class:`mitsuba.ScalarTransform4f` Mitsuba rotation """ angles = 180. * angles / PI if angles.dtype == tf.float32: mi_transform_t = mi.Transform4f angles = mi.Float(angles) else: mi_transform_t = mi.Transform4d angles = mi.Float64(angles) return ( mi_transform_t.rotate(axis=[0., 0., 1.], angle=angles[0]) @ mi_transform_t.rotate(axis=[0., 1., 0.], angle=angles[1]) @ mi_transform_t.rotate(axis=[1., 0., 0.], angle=angles[2]) ) def gen_basis_from_z(z, epsilon): """ Generate a pair of vectors (x,y) such that (x,y,z) is an orthonormal basis. Input ------ z : [..., 3], tf.float Unit vector epsilon : (), tf.float Small value used to avoid errors due to numerical precision Output ------- x : [..., 3], tf.float Unit vector y : [..., 3], tf.float Unit vector """ x = gen_orthogonal_vector(z, epsilon) x,_ = normalize(x) y = cross(z, x) return x,y def compute_spreading_factor(rho_1, rho_2, s): r""" Computes the spreading factor :math:`\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + s)(\rho_2 + s)}}` Input ------ rho_1, rho_2 : [...], tf.float Principal radii of curvature s : [...], tf.float Position along the axial ray at which to evaluate the squared spreading factor Output ------- : float Squared spreading factor """ # In the case of a spherical wave, when the origin (s = 0) is set to unique # caustic point, then both principal radii of curvature are set to zero. # The spreading factor is then equal to 1/s. spherical = tf.logical_and(tf.equal(rho_1, 0.), tf.equal(rho_2, 0.)) a2_spherical = tf.math.reciprocal_no_nan(s) # General formula for the spreading factor a2 = tf.sqrt(rho_1*rho_2/((rho_1+s)*(rho_2+s))) a2 = tf.where(spherical, a2_spherical, a2) return a2 def mitsuba_rectangle_to_world(center, orientation, size, ris=False): """ Build the `to_world` transformation that maps a default Mitsuba rectangle to the rectangle that defines the coverage map surface. Input ------ center : [3], tf.float Center of the rectangle orientation : [3], tf.float Orientation of the rectangle. An orientation of `(0,0,0)` correspond to a rectangle oriented such that z+ is its normal. size : [2], tf.float Scale of the rectangle. The width of the rectangle (in the local X direction) is scale[0] and its height (in the local Y direction) scale[1]. Output ------- to_world : :class:`mitsuba.ScalarTransform4f` Rectangle to world transformation. """ orientation = 180. * orientation / PI trans = \ mi.ScalarTransform4f.translate(center.numpy())\ @ mi.ScalarTransform4f.rotate(axis=[0, 0, 1], angle=orientation[0])\ @ mi.ScalarTransform4f.rotate(axis=[0, 1, 0], angle=orientation[1])\ @ mi.ScalarTransform4f.rotate(axis=[1, 0, 0], angle=orientation[2]) if ris: # The RIS normal points at [1,0,0]. # We hence rotate the normal of the rectangle which points # at [0,0,1] by 90 degrees around the [0,1,0] axis. trans = trans\ @mi.ScalarTransform4f.rotate(axis=[0, 1, 0], angle=90) # size = [width (=y), height (=z)] # Since the RIS is rotated w.r.t to rectangle, # The z axis corresponds to the x axis size = [size[1], size[0]] return (trans @mi.ScalarTransform4f.scale([0.5 * size[0], 0.5 * size[1], 1]) )