Source code for sionna.phy.nr.utils

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0#
"""Utility functions for the NR (5G) module of Sionna PHY"""

import numpy as np
import tensorflow as tf
from sionna.phy.utils import tensor_values_are_in_set, insert_dims
from sionna.phy import dtypes, config
from sionna.phy.utils import TransportBlock, SingleLinkChannel, \
    ebnodb2no, MCSDecoder, scalar_to_shaped_tensor
from sionna.phy.channel import AWGN
from sionna.phy.mapping import Mapper, Demapper, Constellation, BinarySource


[docs] def generate_prng_seq(length, c_init): r"""Implements pseudo-random sequence generator as defined in Sec. 5.2.1 in [3GPP38211]_ based on a length-31 Gold sequence. Parameters ---------- length: `int` Desired output sequence length c_init: `int` Initialization sequence of the PRNG. Must be in the range of 0 to :math:`2^{32}-1`. Output ------ :[``length``], `ndarray` of 0s and 1s Containing the scrambling sequence Note ---- The initialization sequence ``c_init`` is application specific and is usually provided be higher layer protocols. """ # check inputs for consistency assert(length%1==0), "length must be a positive integer." length = int(length) assert(length>0), "length must be a positive integer." assert(c_init%1==0), "c_init must be integer." c_init = int(c_init) assert(c_init<2**32), "c_init must be in [0, 2^32-1]." assert(c_init>=0), "c_init must be in [0, 2^32-1]." # internal parameters n_seq = 31 # length of gold sequence n_c = 1600 # defined in 5.2.1 in 38.211 # init sequences c = np.zeros(length) x1 = np.zeros(length + n_c + n_seq) x2 = np.zeros(length + n_c + n_seq) #int2bin bin_ = format(c_init, f'0{n_seq}b') c_init = [int(x) for x in bin_[-n_seq:]] if n_seq else [] c_init = np.flip(c_init) # reverse order # init x1 and x2 x1[0] = 1 x2[0:n_seq] = c_init # and run the generator for idx in range(length + n_c): x1[idx+31] = np.mod(x1[idx+3] + x1[idx], 2) x2[idx+31] = np.mod(x2[idx+3] + x2[idx+2] + x2[idx+1] + x2[idx], 2) # update output sequence for idx in range(length): c[idx] = np.mod(x1[idx+n_c] + x2[idx+n_c], 2) return c
[docs] def decode_mcs_index(mcs_index, table_index=1, is_pusch=True, transform_precoding=False, pi2bpsk=False, check_index_validity=True, verbose=False): # pylint: disable=line-too-long r"""Returns the modulation order and target coderate for a given MCS index Implements MCS tables as defined in [3GPP38214]_ for PUSCH and PDSCH. Input ----- mcs_index : [...], `tf.int32` | `int` MCS indices (denoted as :math:`I_{MCS}` in [3GPP38214]_). Accepted values are `{0,1,...28}` table_index : [...], `tf.int32` | `int` (default: 1) MCS table indices from [3GPP38214]_ to be used. Accepted values are `{1,2,3,4}`. is_pusch : [...], `tf.bool` | `bool` (default: `True`) Specifies whether the 5G NR physical channel is of 'PUSCH' type. If `False`, then the 'PDSCH' channel is considered. transform_precoding : [...], `tf.bool` | `bool` (default: `False`) Specifies whether the MCS tables described in Sec. 6.1.4.1 of [3GPP38214]_ are applied. Only relevant for "PUSCH". pi2bpsk : [...], `tf.bool` | `bool` | `None` (default) Specifies whether the higher-layer parameter `tp-pi2BPSK` described in Sec. 6.1.4.1 of [3GPP38214]_ is applied. Only relevant for "PUSCH". check_index_validity : `bool` (default: `True`) If `True`, an ValueError is thrown is the input MCS indices are not valid for the given configuration. verbose : `bool` (default: `False`) If `True`, then additional information is printed. Output ------ modulation_order : [...], `tf.int32` Modulation order, i.e., number of bits per symbol, associated with the input MCS index target_rate : [...], `tf.float32` Target coderate associated with the input MCS index """ mcs_index = tf.cast(mcs_index, tf.int32) shape = mcs_index.shape # Cast and reshape inputs table_index = scalar_to_shaped_tensor(table_index, tf.int32, shape) is_pusch = scalar_to_shaped_tensor(is_pusch, tf.bool, shape) transform_precoding = scalar_to_shaped_tensor(transform_precoding, tf.bool, shape) pi2bpsk = scalar_to_shaped_tensor(pi2bpsk, tf.bool, shape) # Check input consistency tf.debugging.assert_shapes([(table_index, shape), (is_pusch, shape), (transform_precoding, shape), (pi2bpsk, shape)], message="inconsistent input shapes") tf.debugging.assert_greater_equal(mcs_index, 0, message='MCS index cannot be negative') tf.debugging.assert_less_equal( mcs_index, 28, message='MCS index cannot be higher than 28') tf.debugging.assert_equal( tensor_values_are_in_set(table_index, [1, 2, 3, 4]), True, message="table_index must contain " + "values in [1,2,3,4]") tf.debugging.assert_type(is_pusch, tf.bool, message="is_pusch.dtype must be bool") tf.debugging.assert_type(transform_precoding, tf.bool, message="transform_precoding.dtype must be bool") tf.debugging.assert_type(pi2bpsk, tf.bool, message="pi2bpsk.dtype must be bool") if verbose: print(f"Selected MCS index {mcs_index.numpy()} for " f"{tf.where(is_pusch, 'PUSCH', 'PDSCH')} channel " f"and Table index {table_index.numpy()}.") # modulation orders # [2, 4, 29]: [is_pusch, table_index, mcs_index] mod_orders = tf.convert_to_tensor([ [ # PUSCH # Table 1 (q=1) [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -1], # Table 2 (q=1) [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, -1], # Table 3 (dummy) [-1] * 29, # Table 4 (dummy) [-1] * 29 ], [ # PDSCH | transform_precoding is False # Table 1 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6], # Table 2 [2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, -1], # Table 3 [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6], # Table 4 [2, 2, 2, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, -1, -1] ] ]) # [2, 4, 29]: [is_pusch, table_index, mcs_index] target_rates = tf.convert_to_tensor([ [ # PUSCH # Table 1 (q=1) [240, 314, 193, 251, 308, 379, 449, 526, 602, 679, 340, 378, 434, 490, 553, 616, 658, 466, 517, 567, 616, 666, 719, 772, 822, 873, 910, 948, -1], # Table 2 (q=1) [60, 80, 100, 128, 156, 198, 120, 157, 193, 251, 308, 379, 449, 526, 602, 679, 378, 434, 490, 553, 616, 658, 699, 772, 567, 616, 666, 772, -1], # Table 3 (dummy) [-1] * 29, # Table 4 (dummy) [-1] * 29 ], [ # PDSCH | transform_precoding is False # Table 1 [120, 157, 193, 251, 308, 379, 449, 526, 602, 679, 340, 378, 434, 490, 553, 616, 658, 438, 466, 517, 567, 616, 666, 719, 772, 822, 873, 910, 948], # Table 2 [120, 193, 308, 449, 602, 378, 434, 490, 553, 616, 658, 466, 517, 567, 616, 666, 719, 772, 822, 873, 682.5, 711, 754, 797, 841, 885, 916.5, 948, -1], # Table 3 [30, 40, 50, 64, 78, 99, 120, 157, 193, 251, 308, 379, 449, 526, 602, 340, 378, 434, 490, 553, 616, 438, 466, 517, 567, 616, 666, 719, 772], # Table 4 [120, 193, 449, 378, 490, 616, 466, 517, 567, 616, 666, 719, 772, 822, 873, 682.5, 711, 754, 797, 841, 885, 916.5, 948, 805.5, 853, 900.5, 948, -1, -1] ] ]) channel_type_idx = tf.cast(tf.logical_not(is_pusch) | tf.logical_not(transform_precoding), tf.int32) # [shape, 3] idx = tf.stack([channel_type_idx, table_index-1, mcs_index], axis=-1) # Select modulation orders and target rates from input # [shape] mod_orders_sel = tf.gather_nd(mod_orders, idx) target_rates_sel = tf.gather_nd(target_rates, idx) # Check that the selected indices are valid if check_index_validity: tf.debugging.assert_non_negative(mod_orders_sel, message='Invalid MCS index') ####################### # Account for pi2BPSK # ####################### # [shape] q = tf.where(pi2bpsk, 1, 2) # input indices at which modulation and target rates depend on q if len(shape)==0: if (channel_type_idx == 0) & ( ((table_index == 1) & (mcs_index < 2)) | ((table_index == 2) & (mcs_index < 6))): mod_orders_sel = mod_orders_sel * tf.cast(q, mod_orders_sel.dtype) target_rates_sel = target_rates_sel / tf.cast(q, target_rates.dtype) else: # [_, len(shape)] idx_q = tf.where( (channel_type_idx == 0) & ( ((table_index == 1) & (mcs_index < 2)) | ((table_index == 2) & (mcs_index < 6)) )) # correct mod_orders via q mod_orders_sel_q = tf.gather_nd( mod_orders_sel, idx_q) * tf.gather_nd(q, idx_q) mod_orders_sel = tf.tensor_scatter_nd_update(mod_orders_sel, idx_q, mod_orders_sel_q) # correct target_rates via q target_rates_sel_q = tf.gather_nd(target_rates_sel, idx_q) / \ tf.cast(tf.gather_nd(q, idx_q), target_rates.dtype) target_rates_sel = tf.tensor_scatter_nd_update( target_rates_sel, idx_q, target_rates_sel_q) target_rates_sel = target_rates_sel / 1024 if verbose: print(f"Modulation order: {mod_orders_sel.numpy()}") print(f"Target code rate: {target_rates_sel.numpy()}") return mod_orders_sel, target_rates_sel
[docs] class MCSDecoderNR(MCSDecoder): r""" Maps a Modulation and Coding Scheme (MCS) index to the corresponding modulation order, i.e., number of bits per symbol, and coderate for 5G-NR networks. Wraps :func:`~sionna.phy.nr.utils.decode_mcs_index` and inherits from :class:`~sionna.phy.utils.MCSDecoder`. Input ----- mcs_index : [...], `tf.int32` MCS index mcs_table_index : [...], `tf.int32` MCS table index. Different tables contain different mappings. mcs_category : [...], `tf.int32` `0` for PUSCH, `1` for PDSCH channel check_index_validity : `bool` (default: `True`) If `True`, an ValueError is thrown is the input mcs indices are not valid for the given configuration. transform_precoding : [...], `tf.bool` | `bool` (default: `False`) Specifies whether the MCS tables described in Sec. 6.1.4.1 of [3GPP38214]_ are applied. Only relevant for "PUSCH". pi2bpsk : [...], `tf.bool` | `bool` | `None` (default) Specifies whether the higher-layer parameter `tp-pi2BPSK` described in Sec. 6.1.4.1 of [3GPP38214]_ is applied. Only relevant for "PUSCH". verbose : `bool` (default: `False`) If `True`, then additional information is printed. Output ------ modulation_order : [...], `tf.int32` Modulation order corresponding to the input MCS index target_coderate : [...], `tf.float` Target coderate corresponding to the input MCS index """ def call(self, mcs_index, mcs_table_index, mcs_category,*, check_index_validity=True, transform_precoding=True, pi2bpsk=False, verbose=False, **kwargs): modulation_order, target_coderate = \ decode_mcs_index(mcs_index, table_index=mcs_table_index, is_pusch=tf.cast(1 - mcs_category, tf.bool), transform_precoding=transform_precoding, pi2bpsk=pi2bpsk, check_index_validity=check_index_validity, verbose=verbose) return modulation_order, target_coderate
[docs] def calculate_num_coded_bits(modulation_order, num_prbs, num_ofdm_symbols, num_dmrs_per_prb, num_layers, num_ov, tb_scaling, precision=None): r""" Computes the number of coded bits that fit in a slot for the given resource grid structure Input ----- modulation_order : [...], `tf.int32` Modulation order, i.e., number of bits per QAM symbol num_prbs : [...], `tf.int32` | `int` Total number of allocated PRBs per OFDM symbol, where 1 PRB equals 12 subcarriers. Must not exceed 275. num_ofdm_symbols : [...], `tf.int32` Number of OFDM symbols allocated for transmission. Cannot be larger than 14. num_dmrs_per_prb : [...], `tf.int32` Number of DMRS (i.e., pilot) symbols per PRB that are `not` used for data transmission, across all ``num_ofdm_symbols`` OFDM symbols. num_layers: [...], `tf.int32` Number of MIMO layers. num_ov : [...], `tf.int32` Number of unused resource elements due to additional overhead as specified by higher layer. tb_scaling: [...], `tf.float` TB scaling factor for PDSCH as defined in TS 38.214 Tab. 5.1.3.2-2. Must contain values in {0.25, 0.5, 1.0}. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, then :attr:`~sionna.phy.config.Config.precision` is used. Output ------ num_coded_bits: [...], `tf.int` | `int` | `None` (default) Number of coded bits can be fit into a given slot for the fiven configuration. """ # Cast inputs if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] num_prbs = tf.cast(num_prbs, tf.int32) modulation_order = tf.cast(modulation_order, tf.int32) num_layers = tf.cast(num_layers, tf.int32) num_ofdm_symbols = tf.cast(num_ofdm_symbols, tf.int32) num_dmrs_per_prb = tf.cast(num_dmrs_per_prb, tf.int32) num_ov = tf.cast(num_ov, tf.int32) tb_scaling = tf.cast(tb_scaling, rdtype) # Validate inputs tf.debugging.assert_greater_equal( num_ofdm_symbols, 1, message="num_ofdm_symbols must be at least 1.") tf.debugging.assert_less_equal( num_ofdm_symbols, 14, message="num_ofdm_symbols must be at most 14.") tf.debugging.assert_greater_equal( num_prbs, 1, message="num_prbs must be at least 1.") tf.debugging.assert_less_equal( num_prbs, 275, message="num_prbs must be at most 275.") tf.debugging.assert_equal( tensor_values_are_in_set(tb_scaling, [0.25, 0.5, 1.0]), True, message="tb_scaling must be 0.25, 0.5, or 1.0.") # Compute n. Resource Elements (RE) per PRB n_re_per_prb = 12 * num_ofdm_symbols - num_dmrs_per_prb - num_ov # The max. number of REs per PRB is limited to 156 in 38.214 n_re_per_prb = tf.minimum(156, n_re_per_prb) # Compute n. coded bits num_coded_bits = tb_scaling * tf.cast( n_re_per_prb * num_prbs * modulation_order * num_layers, rdtype) num_coded_bits = tf.cast(num_coded_bits, tf.int32) return num_coded_bits
[docs] def calculate_tb_size(modulation_order, target_coderate, target_tb_size=None, num_coded_bits=None, num_prbs=None, num_ofdm_symbols=None, num_dmrs_per_prb=None, num_layers=1, num_ov=0, tb_scaling=1.0, return_cw_length=True, verbose=False, precision=None): # pylint: disable=line-too-long r"""Calculates the transport block (TB) size for given system parameters This function follows the procedure defined in TS 38.214 Sec. 5.1.3.2 and Sec. 6.1.4.2 [3GPP38214]_ Input ----- modulation_order : [...], `tf.int` | `int` Modulation order, i.e., number of bits per QAM symbol. target_coderate : [...], `tf.float` | `float` Target coderate. target_tb_size: [...], `tf.float` | `float` | `None` (default) Target transport block size, i.e., number of information bits that can be encoded into a slot for the given slot configuration. num_coded_bits: [...], `tf.int` | `int` | `None` (default) Number of coded bits can be fit into a given slot. If provided, ``num_prbs``, ``num_ofdm_symbols`` and ``num_dmrs_per_prb`` are ignored. num_prbs : [...], `tf.int` | `int` | `None` (default) Total number of allocated PRBs per OFDM symbol, where 1 PRB equals 12 subcarriers. Must not exceed 275. num_ofdm_symbols : [...], `tf.int` | `int` | `None` (default) Number of OFDM symbols allocated for transmission. Cannot be larger than 14. num_dmrs_per_prb : [...], `tf.int` | `int` | `None` (default) Number of DMRS (i.e., pilot) symbols per PRB that are `not` used for data transmission, across all ``num_ofdm_symbols`` OFDM symbols. num_layers: [...], `tf.int` | `int` (default: 1) Number of MIMO layers. num_ov : [...], `tf.int` | `int` | `None` (default) Number of unused resource elements due to additional overhead as specified by higher layer. tb_scaling: [...], `tf.float` | {0.25, 0.5, 1.0} (default: 1.0) TB scaling factor for PDSCH as defined in TS 38.214 Tab. 5.1.3.2-2. return_cw_length : `bool` (default: `True`) If `True`, then the function returns ``tb_size``, ``cb_size``, ``num_cb``, ``tb_crc_length``, ``cb_crc_length``, ``cw_length``. Else, it does not return ``cw_length`` to reduce computation time. verbose : `bool`, (default: `False`) If `True`, then additional information is printed. precision : `None` (default) | "single" | "double" Precision used for internal calculations and outputs. If set to `None`, then :attr:`~sionna.phy.config.Config.precision` is used Output ------ tb_size : [...], `tf.int32` Transport block (TB) size, i.e., how many information bits can be encoded into a slot for the given slot configuration cb_size : [...], `tf.int32` Code block (CB) size, i.e., the number of information bits per codeword, including the TB/CB CRC parity bits num_cb : [...], `tf.int32` Number of CBs that the TB is segmented into tb_crc_length : [...], `tf.int32` Length of the TB CRC cb_crc_length : [...], `tf.int32` Length of each CB CRC cw_length : [..., N], `tf.int32` Codeword length of each of the ``num_cbs`` codewords after LDPC encoding and rate-matching. Note that zeros are appended along the last axis to obtain a dense tensor. The total number of coded bits, ``num_coded_bits``, is the sum of ``cw_length`` across its last axis. Only returned if ``return_cw_length`` is `True` """ if precision is None: rdtype = config.tf_rdtype else: rdtype = dtypes[precision]["tf"]["rdtype"] # Cast inputs and assign default values modulation_order = tf.cast(modulation_order, tf.int32) target_coderate = tf.cast(target_coderate, rdtype) shape = modulation_order.shape num_layers = scalar_to_shaped_tensor(num_layers, tf.int32, shape) tb_scaling = scalar_to_shaped_tensor(tb_scaling, rdtype, shape) #---------------# # N. coded bits # #---------------# if num_coded_bits is not None: num_coded_bits = tf.cast(num_coded_bits, dtype=tf.int32) tf.debugging.assert_equal( num_coded_bits % modulation_order, 0, message="num_coded_bits must be a multiple of modulation_order.") else: tf.debugging.assert_equal( (num_prbs is not None) and (num_ofdm_symbols is not None) and (num_dmrs_per_prb is not None), True, message="If num_coded_bits is None then " "num_prbs, num_ofdm_symbols, num_dmrs_per_prb must be specified.") # Compute num_coded_bits from n. allocated resources num_prbs = tf.cast(num_prbs, tf.int32) num_ofdm_symbols = tf.cast(num_ofdm_symbols, tf.int32) num_dmrs_per_prb = tf.cast(num_dmrs_per_prb, tf.int32) num_ov = scalar_to_shaped_tensor(num_ov, tf.int32, shape) num_coded_bits = calculate_num_coded_bits(modulation_order, num_prbs, num_ofdm_symbols, num_dmrs_per_prb, num_layers, num_ov, tb_scaling, precision=precision) tf.debugging.assert_equal( num_coded_bits % num_layers, 0, message="num_coded_bits must be a multiple of num_layers.") # -------------- # # Target TB size # # -------------- # if target_tb_size is not None: # input num_prbs, num_ofdm_symbols and num_dmrs_per_prb are ignored target_tb_size = tf.cast(target_tb_size, dtype=rdtype) # Validate inputs tf.debugging.assert_less( target_tb_size, tf.cast(num_coded_bits, target_tb_size.dtype), message="target_tb_size must be less than num_coded_bits.") else: # Compute n info bits (Target TB size) target_tb_size = target_coderate * tf.cast(num_coded_bits, rdtype) # ------------------- # # Auxiliary functions # # ------------------- # def n_info_q_if_target_tbs_greater_3824(): # Compute quantized n. info bits if target TB size > 3824 # Step 4 of 38.214 5.3.1.2 log2_n_info_minus_24 = tf.math.log( target_tb_size - tf.cast(24, target_tb_size.dtype)) \ / tf.math.log(tf.cast(2.0, target_tb_size.dtype)) n = tf.math.floor(log2_n_info_minus_24) - 5. n_info_q = tf.math.maximum( tf.cast(3840.0, rdtype), tf.cast(2**n * tf.math.round((target_tb_size - 24) / 2**n), rdtype)) return n_info_q def n_info_q_if_target_tbs_smaller_3824(): # Compute quantized n. info bits if target TB size <= 3824 log2_n_info = tf.math.log(target_tb_size) \ / tf.cast(tf.math.log(2.0), target_tb_size.dtype) n = tf.math.maximum(tf.cast(3.0, rdtype), tf.cast(tf.math.floor(log2_n_info) - 6, rdtype)) n_info_q = tf.math.maximum( tf.cast(24.0, rdtype), tf.cast(2**n * tf.math.floor(target_tb_size / 2**n), rdtype)) return n_info_q def tbs_if_target_tbs_higher_3824(): # Compute TB size if target_tb_size>3824 tbs = 8 * num_cb * tf.math.ceil((n_info_q + 24) / (8 * num_cb)) - 24 return tf.cast(tbs, tf.int32) def tbs_if_target_tbs_smaller_3824(): # Compute TB size if target TB size <= 3824 # Step 3 of 38.214 5.1.3.2 tab51321 = tf.constant( [-1, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 408, 432, 456, 480, 504, 528, 552, 576, 608, 640, 672, 704, 736, 768, 808, 848, 888, 928, 984, 1032, 1064, 1128, 1160, 1192, 1224, 1256, 1288, 1320, 1352, 1416, 1480, 1544, 1608, 1672, 1736, 1800, 1864, 1928, 2024, 2088, 2152, 2216, 2280, 2408, 2472, 2536, 2600, 2664, 2728, 2792, 2856, 2976, 3104, 3240, 3368, 3496, 3624, 3752, 3824], dtype=rdtype) # Find the smallest TB size >= n_info tab51321_expand = insert_dims(tab51321, len(n_info_q.shape), axis=0) n_info_q_expand = tf.expand_dims(n_info_q, axis=-1) is_greater_than_n_info_q = tf.greater_equal(tab51321_expand, n_info_q_expand) tbs_ind = tf.argmax( tf.cumsum(1 - 2 * tf.cast(is_greater_than_n_info_q, rdtype), axis=-1), axis=-1) tbs_ind = tf.minimum(tbs_ind + 1, tab51321.shape[0] - 1) tbs = tf.gather(tab51321, tbs_ind) return tf.cast(tbs, tf.int32) # ----------------------------- # # Quantized n. information bits # # ----------------------------- # n_info_q = tf.where(target_tb_size <= 3824, n_info_q_if_target_tbs_smaller_3824(), n_info_q_if_target_tbs_greater_3824()) # ----------------- # # N. of code blocks # # ----------------- # num_cb = tf.where( target_tb_size <= 3824, # if target_tb_size <= 3824 tf.cast(tf.fill(shape, 1.0), rdtype), # else: tf.where(target_coderate <= 1/4, # if target_coderate <= 1/4: tf.cast(tf.math.ceil((n_info_q + 24) / 3816), rdtype), # else: tf.where(target_tb_size > 8424, # if target_tb_size > 8424: tf.cast(tf.math.ceil((n_info_q + 24) / 8424), rdtype), # else: tf.cast(tf.fill(shape, 1.0), rdtype)))) # ---------------------- # # TB size (n. info bits) # # ---------------------- # tb_size = tf.where(target_tb_size <= 3824, tbs_if_target_tbs_smaller_3824(), tbs_if_target_tbs_higher_3824()) num_cb = tf.cast(num_cb, tf.int32) # ---------------- # # TB/CB CRC length # # ---------------- # # TB CRC see 6.2.1 in 38.212 tb_crc_length = tf.where(tb_size > 3824, tf.fill( tb_size.shape, 24), tf.fill(tb_size.shape, 16)) # if tbs > max CB length, then CRC-24 is added; see 5.2.2 in 38.212 cb_crc_length = tf.where(num_cb > 1, tf.fill( tb_size.shape, 24), tf.fill(tb_size.shape, 0)) # ------- # # CB size # # ------- # cb_size = tf.cast((tb_size + tb_crc_length) / num_cb, tf.int32) + cb_crc_length if verbose: print(f"Modulation order: {modulation_order.numpy()}") if target_coderate is not None: print(f"Target coderate: {target_coderate.numpy():.3f}") effective_rate = tb_size / num_coded_bits print(f"Effective coderate: {effective_rate.numpy():.3f}") print(f"Number of layers: {num_layers.numpy()}") print("------------------") print(f"Info bits per TB: {tb_size.numpy()}") print(f"TB CRC length: {tb_crc_length.numpy()}") print(f"Total number of coded TB bits: {num_coded_bits.numpy()}") print("------------------") print(f"Info bits per CB: {cb_size.numpy()}") print(f"Number of CBs: {num_cb.numpy()}") print(f"CB CRC length: {cb_crc_length.numpy()}") if not return_cw_length: return tb_size, cb_size, num_cb, tb_crc_length, cb_crc_length # --------------------------- # # Codeword length for each CB # # --------------------------- # # The last "num_last_blocks[...]" blocks have a codeword length of # "cw_length_last_blocks[...]" num_last_blocks = tf.math.mod( tf.cast(num_coded_bits / (num_layers * modulation_order), tf.int32), num_cb) cw_length_last_blocks = num_layers * modulation_order * \ tf.cast(tf.math.ceil(num_coded_bits / (num_layers*modulation_order*num_cb)), tf.int32) # The first "num_first_blocks[...]" blocks have a codeword length of # "cw_length_first_blocks[...]" num_first_blocks = num_cb - num_last_blocks cw_length_first_blocks = num_layers * modulation_order * \ tf.cast(tf.math.floor(num_coded_bits / (num_layers*modulation_order*num_cb)), tf.int32) # Flatten num_last_blocks = tf.reshape(num_last_blocks, [-1]) cw_length_last_blocks = tf.reshape(cw_length_last_blocks, [-1]) num_first_blocks = tf.reshape(num_first_blocks, [-1]) cw_length_first_blocks = tf.reshape(cw_length_first_blocks, [-1]) def populate_tensor(rep1, val1, rep2, val2): # Construct a tensor whose i-th row is [[val1[i]]*rep1[i], # [val2[i]]*rep2[i], 0, ..., 0] num_cols = tf.reduce_max(rep1 + rep2) r = tf.range(num_cols)[tf.newaxis, ...] return tf.where(r<rep1[..., tf.newaxis], val1[..., tf.newaxis], tf.where(r<(rep1+rep2)[..., tf.newaxis], val2[..., tf.newaxis], 0)) # Compute codeword lengths cw_length = populate_tensor(num_first_blocks, cw_length_first_blocks, num_last_blocks, cw_length_last_blocks) # Reshape cw_length = tf.reshape(cw_length, tf.concat([shape, [-1]], axis=0)) if verbose: print(f"Output codeword lengths: {cw_length.numpy()}") return tb_size, cb_size, num_cb, tb_crc_length, cb_crc_length, cw_length
[docs] class TransportBlockNR(TransportBlock): r""" Computes the number and size (measured in n. bits) of code blocks within a 5G-NR compliant transport block, given the modulation order, coderate and the total number of coded bits of a transport block. Used in :class:`~sionna.sys.PHYAbstraction`. Inherits from :class:`sionna.phy.utils.TransportBlock` and wraps :func:`~sionna.phy.nr.utils.calculate_tb_size` Input ----- modulation_order : [...], `tf.int32` Modulation order, i.e., number of bits per symbol, associated with the input MCS index. target_rate : [...], `tf.float32` Target coderate. num_coded_bits : [...], `tf.float32` Total number of coded bits across all codewords. Output ------ cb_size : [...], `tf.int32` Code block (CB) size, i.e., the number of information bits per code block. num_cb : [...], `tf.int32` Number of code blocks that the transport block is segmented into. """ def call(self, modulation_order, target_coderate, num_coded_bits, **kwargs): _, cb_size, num_cb, *_ = \ calculate_tb_size(modulation_order, target_coderate, num_coded_bits=num_coded_bits, tb_scaling=1., return_cw_length=False, verbose=False) return cb_size, num_cb
[docs] class CodedAWGNChannelNR(SingleLinkChannel): # pylint: disable=line-too-long r"""Simulates a 5G-NR compliant single-link coded AWGN channel. Inherits from :class:`~sionna.phy.utils.SingleLinkChannel` Parameters ---------- num_bits_per_symbol : `int` | `None` (default) Number of bits per symbol, i.e., modulation order. num_info_bits : `int` | `None` (default) Number of information bits per code block. target_coderate : `float` | `None` (default) Target code rate, i.e., the target ratio between the information and the coded bits within a block num_iter_decoder: `int` (default: 20) Number of decoder iterations. See :class:`~sionna.phy.fec.ldpc.decoding.LDPC5GDecoder` for more details. cn_update: "boxplus-phi" (default) | "boxplus" | "minsum" | "offset-minsum" | "identity" | callable Check node update rule. See :class:`~sionna.phy.fec.ldpc.decoding.LDPC5GDecoder` for more details. kwargs : Additional keyword arguments for :class:`~sionna.phy.fec.ldpc.decoding.LDPC5GDecoder`. Input ----- batch_size : int Size of the simulation batches ebno_db : float `Eb/No` value in dB Output ------ bits : [``batch_size``, ``num_info_bits``], `int` Transmitted bits bits_hat : [``batch_size``, ``num_info_bits``], `int` Decoded bits """ def __init__(self, num_bits_per_symbol=None, num_info_bits=None, target_coderate=None, num_iter_decoder=20, cn_update_decoder="boxplus-phi", precision=None, **kwargs): super().__init__(num_bits_per_symbol, num_info_bits, target_coderate, precision=precision) self._num_iter_decoder = num_iter_decoder self._cn_update_decoder = cn_update_decoder self._kwargs = kwargs def call(self, batch_size, ebno_db): # pylint: disable=import-outside-toplevel from sionna.phy.fec.ldpc import LDPC5GEncoder, LDPC5GDecoder # Set the QAM constellation self.constellation = Constellation("qam", self.num_bits_per_symbol) # Set the Mapper/Demapper self.mapper = Mapper(constellation=self.constellation) self.demapper = Demapper("app", constellation=self.constellation) self.binary_source = BinarySource() self.awgn_channel = AWGN() # 5G code block encoder self.encoder = LDPC5GEncoder( self.num_info_bits, self.num_coded_bits, num_bits_per_symbol=self.num_bits_per_symbol) # 5G code block decoder self.decoder = LDPC5GDecoder( self.encoder, hard_out=True, num_iter=self._num_iter_decoder, cn_update=self._cn_update_decoder, **self._kwargs) # Noise power no = ebnodb2no(ebno_db, num_bits_per_symbol=self.num_bits_per_symbol, coderate=self.target_coderate) # Generate random information bits bits = self.binary_source([batch_size, self.num_info_bits]) # Encode bits codewords = self.encoder(bits) # Map coded bits to complex symbols x = self.mapper(codewords) # Pass through an AWGN channel y = self.awgn_channel(x, no) # Compute log-likelihooh ratio (LLR) llr = self.demapper(y, no) # Decode transmitted bits bits_hat = self.decoder(llr) return bits, bits_hat