## SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0#"""Plotting functions for Sionna PHY"""importnumpyasnpimportmatplotlib.pyplotaspltfromitertoolsimportcompressfromsionna.phy.utilsimportsim_ber
[docs]defplot_ber(snr_db,ber,legend="",ylabel="BER",title="Bit Error Rate",ebno=True,is_bler=None,xlim=None,ylim=None,save_fig=False,path=""):"""Plot error-rates Input ----- snr_db: `numpy.ndarray` or `list` of `numpy.ndarray` Array defining the simulated SNR points ber: `numpy.ndarray` or `list` of `numpy.ndarray` Array defining the BER/BLER per SNR point legend: `str`, (default ""), or `list` of `str` Legend entries ylabel: `str`, (default "BER") y-label title: `str`, (default "Bit Error Rate") Figure title ebno: `bool`, (default `True`) If `True`, the x-label is set to "EbNo [dB]" instead of "EsNo [dB]". is_bler: `bool`, (default `False`) If `True`, the corresponding curve is dashed. xlim: `None` (default) | (`float`, `float`) x-axis limits ylim: `None` (default) | (`float`, `float`) y-axis limits save_fig: `bool`, (default `False`) If `True`, the figure is saved as `.png`. path: `str`, (default "") Path to save the figure (if ``save_fig`` is `True`) Output ------ fig : `matplotlib.figure.Figure` Figure handle ax : matplotlib.axes.Axes Axes object """# legend must be a list or stringifnotisinstance(legend,list):assertisinstance(legend,str)legend=[legend]assertisinstance(title,str),"title must be str."# broadcast snr if ber is listifisinstance(ber,list):ifnotisinstance(snr_db,list):snr_db=[snr_db]*len(ber)# check that is_bler is list of same size and contains only boolsifis_blerisNone:ifisinstance(ber,list):is_bler=[False]*len(ber)# init is_bler as list with Falseelse:is_bler=Falseelse:ifisinstance(is_bler,list):assert(len(is_bler)==len(ber)),"is_bler has invalid size."else:assertisinstance(is_bler,bool), \
"is_bler must be bool or list of bool."is_bler=[is_bler]# change to list# tile snr_db if not list, but ber is listfig,ax=plt.subplots(figsize=(16,10))plt.xticks(fontsize=18)plt.yticks(fontsize=18)ifxlimisnotNone:plt.xlim(xlim)ifylimisnotNone:plt.ylim(ylim)plt.title(title,fontsize=25)# return figure handleifisinstance(ber,list):foridx,binenumerate(ber):ifis_bler[idx]:line_style="--"else:line_style=""plt.semilogy(snr_db[idx],b,line_style,linewidth=2)else:ifis_bler:line_style="--"else:line_style=""plt.semilogy(snr_db,ber,line_style,linewidth=2)plt.grid(which="both")ifebno:plt.xlabel(r"$E_b/N_0$ (dB)",fontsize=25)else:plt.xlabel(r"$E_s/N_0$ (dB)",fontsize=25)plt.ylabel(ylabel,fontsize=25)plt.legend(legend,fontsize=20)ifsave_fig:plt.savefig(path)plt.close(fig)else:#plt.close(fig)passreturnfig,ax
[docs]classPlotBER():"""Provides a plotting object to simulate and store BER/BLER curves Parameters ---------- title: `str`, (default "Bit/Block Error Rate") Figure title Input ----- snr_db: `numpy.ndarray` or `list` of `numpy.ndarray`, `float` SNR values ber: `numpy.ndarray` or `list` of `numpy.ndarray`, `float` BER values corresponding to ``snr_db`` legend: `str` or `list` of `str` Legend entries is_bler: `bool` or `list` of `bool`, (default []) If `True`, ``ber`` will be interpreted as BLER. show_ber: `bool`, (default `True`) If `True`, BER curves will be plotted. show_bler: `bool`, (default `True`) If `True`, BLER curves will be plotted. xlim: `None` (default) | (`float`, `float`) x-axis limits ylim: `None` (default) | (`float`, `float`) y-axis limits save_fig: `bool`, (default `False`) If `True`, the figure is saved as `.png`. path: `str`, (default "") Path to save the figure (if ``save_fig`` is `True`) """def__init__(self,title="Bit/Block Error Rate"):assertisinstance(title,str),"title must be str."self._title=title# init listsself._bers=[]self._snrs=[]self._legends=[]self._is_bler=[]# pylint: disable=W0102def__call__(self,snr_db=[],ber=[],legend=[],is_bler=[],show_ber=True,show_bler=True,xlim=None,ylim=None,save_fig=False,path=""):"""Plot BER curves. """assertisinstance(path,str),"path must be str"assertisinstance(save_fig,bool),"save_fig must be bool"# broadcast snr if ber is listifisinstance(ber,list):ifnotisinstance(snr_db,list):snr_db=[snr_db]*len(ber)ifnotisinstance(snr_db,list):snrs=self._snrs+[snr_db]else:snrs=self._snrs+snr_dbifnotisinstance(ber,list):bers=self._bers+[ber]else:bers=self._bers+berifnotisinstance(legend,list):legends=self._legends+[legend]else:legends=self._legends+legendifnotisinstance(is_bler,list):is_bler=self._is_bler+[is_bler]else:is_bler=self._is_bler+is_bler# deactivate BER/BLERiflen(is_bler)>0:# ignore if object is emptyifshow_berisFalse:snrs=list(compress(snrs,is_bler))bers=list(compress(bers,is_bler))legends=list(compress(legends,is_bler))is_bler=list(compress(is_bler,is_bler))ifshow_blerisFalse:snrs=list(compress(snrs,np.invert(is_bler)))bers=list(compress(bers,np.invert(is_bler)))legends=list(compress(legends,np.invert(is_bler)))is_bler=list(compress(is_bler,np.invert(is_bler)))# set ylabelylabel="BER / BLER"ifnp.all(is_bler):# only BLERs to plotylabel="BLER"ifnotnp.any(is_bler):# only BERs to plotylabel="BER"# and plot the resultsplot_ber(snr_db=snrs,ber=bers,legend=legends,is_bler=is_bler,title=self._title,ylabel=ylabel,xlim=xlim,ylim=ylim,save_fig=save_fig,path=path)####public methods@propertydeftitle(self):""" `str` : Get/set title of the plot """returnself._title@title.setterdeftitle(self,title):assertisinstance(title,str),"title must be string"self._title=title@propertydefber(self):""" `list` of `numpy.ndarray`, `float` : Stored BER/BLER values """returnself._bers@propertydefsnr(self):""" `list` of `numpy.ndarray`, `float` : Stored SNR values """returnself._snrs@propertydeflegend(self):""" `list` of `str` : Legend entries """returnself._legends@propertydefis_bler(self):""" `list` of `bool` : Indicates if a curve shall be interpreted as BLER """returnself._is_blerdefsimulate(self,mc_fun,ebno_dbs,batch_size,max_mc_iter,legend="",add_ber=True,add_bler=False,soft_estimates=False,num_target_bit_errors=None,num_target_block_errors=None,target_ber=None,target_bler=None,early_stop=True,graph_mode=None,distribute=None,add_results=True,forward_keyboard_interrupt=True,show_fig=True,verbose=True):# pylint: disable=line-too-longr"""Simulate BER/BLER curves for a given model and saves the results Internally calls :class:`sionna.phy.utils.sim_ber`. Input ----- mc_fun: `callable` Callable that yields the transmitted bits `b` and the receiver's estimate `b_hat` for a given ``batch_size`` and ``ebno_db``. If ``soft_estimates`` is `True`, b_hat is interpreted as logit. ebno_dbs: `numpy.ndarray` of `float` SNR points to be evaluated batch_size: `tf.int` Batch-size for evaluation max_mc_iter: `int` Max. number of Monte-Carlo iterations per SNR point legend: `str`, (default "") Name to appear in legend add_ber: `bool`, (default `True`) Indicates if BER should be added to plot add_bler: `bool`, (default `True`) Indicate if BLER should be added to plot soft_estimates: `bool`, (default `False`) If `True`, ``b_hat`` is interpreted as logit and additional hard-decision is applied internally. num_target_bit_errors: `None` (default) | `int` Target number of bit errors per SNR point until the simulation stops num_target_block_errors: `None` (default) | `int` Target number of block errors per SNR point until the simulation stops target_ber: `None` (default) | `float` The simulation stops after the first SNR point which achieves a lower bit error rate as specified by ``target_ber``. This requires ``early_stop`` to be `True`. target_bler: `None` (default) | `float` The simulation stops after the first SNR point which achieves a lower block error rate as specified by ``target_bler``. This requires ``early_stop`` to be `True`. early_stop: `bool`, (default `True`) If `True`, the simulation stops after the first error-free SNR point (i.e., no error occurred after ``max_mc_iter`` Monte-Carlo iterations). graph_mode: `None` (default) | "graph" | "xla" A string describing the execution mode of ``mc_fun``. Defaults to `None`. In this case, ``mc_fun`` is executed as is. distribute: `None` (default) | "all" | list of indices | `tf.distribute.strategy` Distributes simulation on multiple parallel devices. If `None`, multi-device simulations are deactivated. If "all", the workload will be automatically distributed across all available GPUs via the `tf.distribute.MirroredStrategy`. If an explicit list of indices is provided, only the GPUs with the given indices will be used. Alternatively, a custom `tf.distribute.strategy` can be provided. Note that the same `batch_size` will be used for all GPUs in parallel, but the number of Monte-Carlo iterations ``max_mc_iter`` will be scaled by the number of devices such that the same number of total samples is simulated. However, all stopping conditions are still in-place which can cause slight differences in the total number of simulated samples. add_results: `bool`, (default `True`) If `True`, the simulation results will be appended to the internal list of results. show_fig: `bool`, (default `True`) If `True`, a BER figure will be plotted. verbose: `bool`, (default `True`) If `True`, the current progress will be printed. forward_keyboard_interrupt: `bool`, (default `True`) If `False`, `KeyboardInterrupts` will be catched internally and not forwarded (e.g., will not stop outer loops). If `True`, the simulation ends and returns the intermediate simulation results. Output ------ ber: `tf.float` Simulated bit-error rates bler: `tf.float` Simulated block-error rates """ber,bler=sim_ber(mc_fun,ebno_dbs,batch_size,soft_estimates=soft_estimates,max_mc_iter=max_mc_iter,num_target_bit_errors=num_target_bit_errors,num_target_block_errors=num_target_block_errors,target_ber=target_ber,target_bler=target_bler,early_stop=early_stop,graph_mode=graph_mode,distribute=distribute,verbose=verbose,forward_keyboard_interrupt=forward_keyboard_interrupt)ifadd_ber:self._bers+=[ber]self._snrs+=[ebno_dbs]self._legends+=[legend]self._is_bler+=[False]ifadd_bler:self._bers+=[bler]self._snrs+=[ebno_dbs]self._legends+=[legend+" (BLER)"]self._is_bler+=[True]ifshow_fig:self()# remove current curve if add_results=Falseifadd_resultsisFalse:ifadd_bler:self.remove(-1)ifadd_ber:self.remove(-1)returnber,blerdefadd(self,ebno_db,ber,is_bler=False,legend=""):"""Add static reference curves Input ----- ebno_dbs: `numpy.ndarray` or `list` of `numpy.ndarray`, `float` SNR points ber: `numpy.ndarray` or `list` of `numpy.ndarray`, `float` BER corresponding to each SNR point is_bler: `bool`, (default `False`) If `True`, ``ber`` is interpreted as BLER. legend: `str`, (default "") Legend entry """assert(len(ebno_db)==len(ber)), \
"ebno_db and ber must have same number of elements."assertisinstance(legend,str),"legend must be str."assertisinstance(is_bler,bool),"is_bler must be bool."# concatenate curvesself._bers+=[ber]self._snrs+=[ebno_db]self._legends+=[legend]self._is_bler+=[is_bler]defreset(self):"""Removes all internal data"""self._bers=[]self._snrs=[]self._legends=[]self._is_bler=[]defremove(self,idx=-1):"""Removes curve with index ``idx`` Input ------ idx: `int` Index of the dataset that should be removed. Negative indexing is possible. """assertisinstance(idx,int),"id must be int."delself._bers[idx]delself._snrs[idx]delself._legends[idx]delself._is_bler[idx]