Source code for sionna.rt.antenna_array

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
Implements classes and methods related to antenna arrays
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.markers import MarkerStyle
from .antenna import Antenna
from . import scene
from .utils import rotate

[docs]class AntennaArray(): # pylint: disable=line-too-long r""" Class implementing an antenna array An antenna array is composed of identical antennas that are placed at different positions. The ``positions`` parameter can be assigned to a TensorFlow variable or tensor. .. code-block:: Python array = AntennaArray(antenna=Antenna("tr38901", "V"), positions=tf.Variable([[0,0,0], [0, 1, 1]])) Parameters ---------- antenna : :class:`~sionna.rt.Antenna` Antenna instance positions : [array_size, 3], array_like Array of relative positions :math:`(x,y,z)` [m] of each antenna (dual-polarized antennas are counted as a single antenna and share the same position). The absolute position of the antennas is obtained by adding the position of the :class:`~sionna.rt.Transmitter` or :class:`~sionna.rt.Receiver` using it. dtype : tf.complex64 or tf.complex128 Data type used for all computations. Defaults to `tf.complex64`. """ def __init__(self, antenna, positions, dtype=tf.complex64): super().__init__() if dtype not in (tf.complex64, tf.complex128): raise ValueError("`dtype` must be tf.complex64 or tf.complex128`") self._rdtype = dtype.real_dtype self.antenna = antenna self.positions = positions @property def antenna(self): """ :class:`~sionna.rt.Antenna` : Get/set the antenna """ return self._antenna @antenna.setter def antenna(self, antenna): if not isinstance(antenna, Antenna): raise TypeError("``antenna`` must be an instance of Antenna.") self._antenna = antenna @property def positions(self): """ [array_size, 3], `tf.float` : Get/set array of relative positions :math:`(x,y,z)` [m] of each antenna (dual-polarized antennas are counted as a single antenna and share the same position). """ return self._positions @positions.setter def positions(self, positions): if isinstance(positions, tf.Variable): if positions.dtype != self._rdtype: raise TypeError(f"`positions` must have dtype={self._rdtype}") else: self._positions = positions else: self._positions = tf.cast(positions, self._rdtype) @property def num_ant(self): """ int (read-only) : Number of linearly polarized antennas in the array. Dual-polarized antennas are counted as two linearly polarized antennas. """ return self._positions.shape[0]*len(self._antenna.patterns) @property def array_size(self): """ int (read-only) : Number of antennas in the array. Dual-polarized antennas are counted as a single antenna. """ return self._positions.shape[0]
[docs] def rotated_positions(self, orientation): r""" Get the antenna positions rotated according to ``orientation`` Input ------ orientation : [3], tf.float Orientation :math:`(\alpha, \beta, \gamma)` [rad] specified through three angles corresponding to a 3D rotation as defined in :eq:`rotation`. Output ------- : [array_size, 3] Rotated positions """ # [array_size, 3] rot_p = rotate(self.positions, orientation) return rot_p
[docs]class PlanarArray(AntennaArray): # pylint: disable=line-too-long r""" Class implementing a planar antenna array The antennas are regularly spaced, located in the y-z plane, and numbered column-first from the top-left to bottom-right corner. Parameters ---------- num_rows : int Number of rows num_cols : int Number of columns vertical_spacing : float Vertical antenna spacing [multiples of wavelength]. horizontal_spacing : float Horizontal antenna spacing [multiples of wavelength]. pattern : str, callable, or length-2 sequence of callables Antenna pattern. Either one of ["iso", "dipole", "hw_dipole", "tr38901"], or a callable, or a length-2 sequence of callables defining antenna patterns. In the latter case, the antennas are dual polarized and each callable defines the antenna pattern in one of the two orthogonal polarization directions. An antenna pattern is a callable that takes as inputs vectors of zenith and azimuth angles of the same length and returns for each pair the corresponding zenith and azimuth patterns. See :eq:`C` for more detail. polarization : str or None Type of polarization. For single polarization, must be "V" (vertical) or "H" (horizontal). For dual polarization, must be "VH" or "cross". Only needed if ``pattern`` is a string. polarization_model: int, one of [1,2] Polarization model to be used. Options `1` and `2` refer to :func:`~sionna.rt.antenna.polarization_model_1` and :func:`~sionna.rt.antenna.polarization_model_2`, respectively. Defaults to `2`. dtype : tf.complex64 or tf.complex128 Datatype used for all computations. Defaults to `tf.complex64`. Example ------- .. code-block:: Python array = PlanarArray(8,4, 0.5, 0.5, "tr38901", "VH") array.show() .. figure:: ../figures/antenna_array.png :align: center :scale: 100% """ def __init__(self, num_rows, num_cols, vertical_spacing, horizontal_spacing, pattern, polarization=None, polarization_model=2, dtype=tf.complex64): if dtype not in (tf.complex64, tf.complex128): raise ValueError("`dtype` must be tf.complex64 or tf.complex128`") # Create list of antennas array_size = num_rows*num_cols antenna = Antenna(pattern, polarization, polarization_model, dtype) # Compute antenna positions d_v = vertical_spacing d_h = horizontal_spacing positions = np.zeros([array_size, 3]) for i in range(num_rows): for j in range(num_cols): positions[i + j*num_rows] = [0, j*d_h, -i*d_v] # Center the panel around the origin offset = [0, -(num_cols-1)*d_h/2, (num_rows-1)*d_v/2] positions += offset super().__init__(antenna, positions, dtype) self._positions_set = False @property def positions(self): """ [array_size, 3], `tf.float` : Get/set array of relative positions :math:`(x,y,z)` [m] of each antenna (dual-polarized antennas are counted as a single antenna and share the same position). """ if not self._positions_set: """Scale positions by wavelength""" if hasattr(scene.Scene(), "wavelength"): wavelength = scene.Scene().wavelength else: wavelength = tf.cast(1, self._rdtype) return self._positions*wavelength else: """Return provided positions""" return self._positions @positions.setter def positions(self, positions): if isinstance(positions, tf.Variable): if positions.dtype != self._rdtype: raise TypeError(f"`positions` must have dtype={self._rdtype}") else: self._positions = positions else: self._positions = tf.cast(positions, self._rdtype) self._positions_set = True
[docs] def show(self): r"""show() Visualizes the antenna array Antennas are depicted by markers that are annotated with the antenna number. The marker is not related to the polarization of an antenna. Output ------ : :class:`matplotlib.pyplot.Figure` Figure depicting the antenna array """ fig = plt.figure() plt.plot(self.positions[:,1], self.positions[:,2], marker=MarkerStyle("+").get_marker(), markeredgecolor='red', markerfacecolor='red', markersize="10", linestyle="None", markeredgewidth="1") for i, p in enumerate(self.positions): fig.axes[0].annotate(i+1, (p[1], p[2])) plt.xlabel("y (m)") plt.ylabel("z (m)") plt.title("Planar Array Layout") return fig