Source code for sionna.rt.scene

#
# SPDX-FileCopyrightText: Copyright (c) 2021-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""
A scene contains everything that is needed for rendering and radio propagation
simulation. This includes the scene geometry, materials, transmitters,
receivers, as well as cameras.
"""

import os
from importlib_resources import files

import matplotlib
import matplotlib.pyplot as plt
import mitsuba as mi
import tensorflow as tf
import drjit as dr

from .antenna_array import AntennaArray
from .camera import Camera
from .radio_device import RadioDevice
from sionna.constants import SPEED_OF_LIGHT, PI
from .itu_materials import instantiate_itu_materials
from .radio_material import RadioMaterial
from .receiver import Receiver
from .ris import RIS
from .scene_object import SceneObject
from .solver_paths import SolverPaths, PathsTmpData
from .solver_cm import SolverCoverageMap
from .transmitter import Transmitter
from .previewer import InteractiveDisplay
from .renderer import render, coverage_map_color_mapping
from .utils import expand_to_rank
from .paths import Paths
from . import scenes


[docs]class Scene: # pylint: disable=line-too-long r""" Scene() The scene contains everything that is needed for radio propagation simulation and rendering. A scene is a collection of multiple instances of :class:`~sionna.rt.SceneObject` which define the geometry and materials of the objects in the scene. The scene also includes transmitters (:class:`~sionna.rt.Transmitter`) and receivers (:class:`~sionna.rt.Receiver`) for which propagation :class:`~sionna.rt.Paths`, channel impulse responses (CIRs) or coverage maps (:class:`~sionna.rt.CoverageMap`) can be computed, as well as cameras (:class:`~sionna.rt.Camera`) for rendering. The only way to instantiate a scene is by calling :meth:`~sionna.rt.Scene,.load_scene()`. Note that only a single scene can be loaded at a time. Example scenes can be loaded as follows: .. code-block:: Python scene = load_scene(sionna.rt.scene.munich) scene.preview() .. figure:: ../figures/scene_preview.png :align: center """ # Default frequency DEFAULT_FREQUENCY = 3.5e9 # Hz # This object is a singleton, as it is assumed that only one scene can be # loaded at a time. _instance = None def __new__(cls, *args, **kwargs): # pylint: disable=unused-argument if cls._instance is None: instance = object.__new__(cls) # Creates fields if required. # This is done only the first time the instance is created. # Transmitters instance._transmitters = {} # Receivers instance._receivers = {} # Reconfigurable intelligent surfaces instance._ris = {} # Reconfigurable intelligent surfaces instance._ris = {} # Cameras instance._cameras = {} # Transmitter antenna array instance._tx_array = None # Receiver antenna array instance._rx_array = None # Radio materials instance._radio_materials = {} # Scene objects instance._scene_objects = {} # By default, the antenna arrays is applied synthetically instance._synthetic_array = True # Holds a reference to the interactive preview widget instance._preview_widget = None # Set the unique instance of the scene cls._instance = instance # By default, no callable is used for radio materials cls._instance._radio_material_callable = None # By default, no callable is used for scattering patterns cls._instance._scattering_pattern_callable = None return cls._instance def __init__(self, env_filename = None, dtype = tf.complex64): # If a filename is provided, loads the scene from it. # The previous scene is overwritten. if env_filename: if dtype not in (tf.complex64, tf.complex128): msg = "`dtype` must be tf.complex64 or tf.complex128`" raise ValueError(msg) self._dtype = dtype self._rdtype = dtype.real_dtype # Clear it all self._clear() # Set the frequency to the default value self.frequency = Scene.DEFAULT_FREQUENCY # Populate with ITU materials instantiate_itu_materials(self._dtype) # Load the scene # Keep track of the Mitsuba scene if env_filename == "__empty__": # Set an empty scene self._scene = mi.load_dict({"type": "scene", "integrator": { "type": "path", }}) else: self._scene = mi.load_file(env_filename) self._scene_params = mi.traverse(self._scene) # Instantiate the solver self._solver_paths = SolverPaths(self, dtype=dtype) # Solver for coverage map self._solver_cm = SolverCoverageMap(self, solver=self._solver_paths, dtype=dtype) # Load the cameras self._load_cameras() # Load the scene objects self._load_scene_objects() # By default, no callable is used for radio materials self.radio_material_callable = None # By default, no callable is used for scattering patterns self._scattering_pattern_callable = None @property def cameras(self): """ `dict` (read-only), { "name", :class:`~sionna.rt.Camera`} : Dictionary of cameras in the scene """ return dict(self._cameras) @property def frequency(self): """ float : Get/set the carrier frequency [Hz] Setting the frequency updates the parameters of frequency-dependent radio materials. Defaults to 3.5e9. """ return self._frequency @frequency.setter def frequency(self, f): if f <= 0.0: raise ValueError("Frequency must be positive") self._frequency = tf.cast(f, self._dtype.real_dtype) # Wavelength [m] self._wavelength = tf.cast(SPEED_OF_LIGHT/f, self._dtype.real_dtype) # Update radio materials for mat in self.radio_materials.values(): mat.frequency_update() @property def wavelength(self): """ float (read-only) : Wavelength [m] """ return self._wavelength @property def wavenumber(self): r""" float (read-only) : Wavenumber :math:`k=2\pi/\lambda` [m^-1] """ return tf.cast(2*PI, self._dtype.real_dtype)/self._wavelength @property def synthetic_array(self): """ bool : Get/set if the antenna arrays are applied synthetically. Defaults to `True`. """ return self._synthetic_array @synthetic_array.setter def synthetic_array(self, value): if not isinstance(value, bool): raise TypeError("'synthetic_array' must be boolean") self._synthetic_array = value @property def dtype(self): r""" `tf.complex64 | tf.complex128` : Datatype used in tensors """ return self._dtype @property def transmitters(self): # pylint: disable=line-too-long """ `dict` (read-only), { "name", :class:`~sionna.rt.Transmitter`} : Dictionary of transmitters in the scene """ return dict(self._transmitters) @property def receivers(self): """ `dict` (read-only), { "name", :class:`~sionna.rt.Receiver`} : Dictionary of receivers in the scene """ return dict(self._receivers) @property def ris(self): """ `dict` (read-only), { "name", :class:`~sionna.rt.RIS`} : Dictionary of reconfigurable intelligent surfaces (RIS) in the scene """ return dict(self._ris) @property def radio_materials(self): # pylint: disable=line-too-long """ `dict` (read-only), { "name", :class:`~sionna.rt.RadioMaterial`} : Dictionary of radio materials """ return dict(self._radio_materials) @property def objects(self): # pylint: disable=line-too-long """ `dict` (read-only), { "name", :class:`~sionna.rt.SceneObject`} : Dictionary of scene objects """ return dict(self._scene_objects) @property def tx_array(self): """ :class:`~sionna.rt.AntennaArray` : Get/set the antenna array used by all transmitters in the scene. Defaults to `None`. """ return self._tx_array @tx_array.setter def tx_array(self, array): if not isinstance(array, AntennaArray): raise TypeError("`array` must be an instance of ``AntennaArray``") self._tx_array = array @property def rx_array(self): """ :class:`~sionna.rt.AntennaArray` : Get/set the antenna array used by all receivers in the scene. Defaults to `None`. """ return self._rx_array @rx_array.setter def rx_array(self, array): if not isinstance(array, AntennaArray): raise TypeError("`array` must be an instance of ``AntennaArray``") self._rx_array = array @property def size(self): """ [3], tf.float : Get the size of the scene, i.e., the size of the axis-aligned minimum bounding box for the scene """ size = tf.cast(self._scene.bbox().max - self._scene.bbox().min, self._rdtype) return size @property def center(self): """ [3], tf.float : Get the center of the scene """ size = tf.cast((self._scene.bbox().max + self._scene.bbox().min)*0.5, self._rdtype) return size
[docs] def get(self, name): # pylint: disable=line-too-long """ Returns a scene object, transmitter, receiver, camera, or radio material Input ----- name : str Name of the item to retrieve Output ------ item : :class:`~sionna.rt.SceneObject` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.Camera` | `None` Retrieved item. Returns `None` if no corresponding item was found in the scene. """ if name in self._transmitters: return self._transmitters[name] if name in self._receivers: return self._receivers[name] if name in self._ris: return self._ris[name] if name in self._ris: return self._ris[name] if name in self._radio_materials: return self._radio_materials[name] if name in self._scene_objects: return self._scene_objects[name] if name in self._cameras: return self._cameras[name] return None
[docs] def add(self, item): # pylint: disable=line-too-long # pylint: disable=line-too-long """ Adds a transmitter, receiver, RIS, radio material, or camera to the scene. If a different item with the same name as ``item`` is already part of the scene, an error is raised. Input ------ item : :class:`~sionna.rt.Transmitter` | :class:`~sionna.rt.Receiver` | :class:`~sionna.rt.RIS` | :class:`~sionna.rt.RadioMaterial` | :class:`~sionna.rt.Camera` Item to add to the scene """ if ( (not isinstance(item, Camera)) and (not isinstance(item, RadioDevice)) and (not isinstance(item, RadioMaterial)) ): err_msg = "The input must be a Transmitter, Receiver, RIS, Camera, or"\ " RadioMaterial" raise ValueError(err_msg) name = item.name s_item = self.get(name) if s_item is not None: if s_item is not item: # In the case of RadioMaterial, the current item with same # name could just be a placeholder if (isinstance(s_item, RadioMaterial) and isinstance(item, RadioMaterial) and s_item.is_placeholder): s_item.assign(item) s_item.is_placeholder = False else: msg = f"Name '{name}' is already used by another item of"\ " the scene" raise ValueError(msg) else: # This item was already added. return if isinstance(item, Transmitter): self._transmitters[name] = item item.scene = self elif isinstance(item, Receiver): self._receivers[name] = item item.scene = self elif isinstance(item, RIS): self._ris[name] = item # Manually assign object_id to each RIS if len(self.objects)>0: max_id = max(obj.object_id for obj in self.objects.values()) else: max_id=0 max_id += len(self._ris) item.object_id = max_id # Set scene propety and radio material item.scene = self item.radio_material = "itu_metal" elif isinstance(item, RadioMaterial): self._radio_materials[name] = item item.frequency_update() elif isinstance(item, Camera): self._cameras[name] = item item.scene = self
[docs] def remove(self, name): # pylint: disable=line-too-long """ Removes a transmitter, receiver, RIS, camera, or radio material from the scene. In the case of a radio material, it must not be used by any object of the scene. Input ----- name : str Name of the item to remove """ if not isinstance(name, str): raise ValueError("The input should be a string") item = self.get(name) if item is None: pass elif isinstance(item, Transmitter): del self._transmitters[name] elif isinstance(item, Receiver): del self._receivers[name] elif isinstance(item, RIS): del self._ris[name] elif isinstance(item, RIS): del self._ris[name] elif isinstance(item, Camera): del self._cameras[name] elif isinstance(item, RadioMaterial): if item.is_used: msg = f"The radio material '{name}' is used by at least one"\ " object" raise ValueError(msg) del self._radio_materials[name] else: msg = "Only Transmitters, Receivers, RIS, Cameras, or RadioMaterials"\ " can be removed" raise TypeError(msg)
def trace_paths(self, max_depth=3, method="fibonacci", num_samples=int(1e6), los=True, reflection=True, diffraction=False, scattering=False, ris=True, scat_keep_prob=0.001, edge_diffraction=False, check_scene=True): # pylint: disable=line-too-long r""" Computes the trajectories of the paths by shooting rays The EM fields corresponding to the traced paths are not computed. They can be computed using :meth:`~sionna.rt.Scene.compute_fields()`: .. code-block:: Python traced_paths = scene.trace_paths() paths = scene.compute_fields(*traced_paths) Path tracing is independent of the radio materials, antenna patterns, and radio device orientations. Therefore, a set of traced paths could be reused for different values of these quantities, e.g., to calibrate the ray tracer. This can enable significant resource savings as path tracing is typically significantly more resource-intensive than field computation. Note that :meth:`~sionna.rt.Scene.compute_paths()` does both path tracing and field computation. Input ------ max_depth : int Maximum depth (i.e., number of interaction with objects in the scene) allowed for tracing the paths. Defaults to 3. method : str ("exhaustive"|"fibonacci") Method to be used to list candidate paths. The "exhaustive" method tests all possible combination of primitives as paths. This method is not compatible with scattering. The "fibonacci" method uses a shoot-and-bounce approach to find candidate chains of primitives. Initial ray directions are arranged in a Fibonacci lattice on the unit sphere. This method can be applied to very large scenes. However, there is no guarantee that all possible paths are found. Defaults to "fibonacci". num_samples: int Number of random rays to trace in order to generate candidates. A large sample count may exhaust GPU memory. Defaults to 1e6. Only needed if ``method`` is "fibonacci". los : bool If set to `True`, then the LoS paths are computed. Defaults to `True`. reflection : bool If set to `True`, then the reflected paths are computed. Defaults to `True`. diffraction : bool If set to `True`, then the diffracted paths are computed. Defaults to `False`. scattering : bool If set to `True`, then the scattered paths are computed. Only works with the Fibonacci method. Defaults to `False`. ris : bool If set to `True`, then the paths involving RIS are computed. Defaults to `True`. ris : bool If set to `True`, then the paths involving RIS are computed. Defaults to `True`. scat_keep_prob : float Probability with which to keep scattered paths. This is helpful to reduce the number of scattered paths computed, which might be prohibitively high in some setup. Must be in the range (0,1). Defaults to 0.001. edge_diffraction : bool If set to `False`, only diffraction on wedges, i.e., edges that connect two primitives, is considered. Defaults to `False`. check_scene : bool If set to `True`, checks that the scene is well configured before computing the paths. This can add a significant overhead. Defaults to `True`. Output ------- spec_paths : :class:`~sionna.rt.Paths` Computed specular paths diff_paths : :class:`~sionna.rt.Paths` Computed diffracted paths scat_paths : :class:`~sionna.rt.Paths` Computed scattered paths ris_paths : :class:`~sionna.rt.Paths` Computed paths involving RIS ris_paths : :class:`~sionna.rt.Paths` Computed paths involving RIS spec_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the specular paths diff_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the diffracted paths scat_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the scattered paths ris_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the paths involving RIS ris_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the paths involving RIS """ if scat_keep_prob < 0. or scat_keep_prob > 1.: msg = "The parameter `scat_keep_prob` must be in the range (0,1)" raise ValueError(msg) # Check that all is set to compute paths if check_scene: self._check_scene(False) # Trace the paths paths = self._solver_paths.trace_paths(max_depth, method=method, num_samples=num_samples, los=los, reflection=reflection, diffraction=diffraction, scattering=scattering, ris=ris, scat_keep_prob=scat_keep_prob, edge_diffraction=edge_diffraction) return paths def compute_fields(self, spec_paths, diff_paths, scat_paths, ris_paths, spec_paths_tmp, diff_paths_tmp, scat_paths_tmp, ris_paths_tmp, check_scene=True, scat_random_phases=True, testing=False): r"""compute_fields(self, spec_paths, diff_paths, scat_paths, spec_paths_tmp, diff_paths_tmp, scat_paths_tmp, check_scene=True, scat_random_phases=True) Computes the EM fields corresponding to traced paths Paths can be traced using :meth:`~sionna.rt.Scene.trace_paths()`. This method can then be used to finalize the paths calculation by computing the corresponding fields: .. code-block:: Python traced_paths = scene.trace_paths() paths = scene.compute_fields(*traced_paths) Paths tracing is independent from the radio materials, antenna patterns, and radio devices orientations. Therefore, a set of traced paths could be reused for different values of these quantities, e.g., to calibrate the ray tracer. This can enable significant resource savings as paths tracing is typically significantly more resource-intensive than field computation. Note that :meth:`~sionna.rt.Scene.compute_paths()` does both tracing and field computation. Input ------ spec_paths : :class:`~sionna.rt.Paths` Specular paths diff_paths : :class:`~sionna.rt.Paths` Diffracted paths scat_paths : :class:`~sionna.rt.Paths` Scattered paths ris_paths : :class:`~sionna.rt.Paths` Computed paths involving RIS ris_paths : :class:`~sionna.rt.Paths` Computed paths involving RIS spec_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the specular paths diff_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the diffracted paths scat_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the scattered paths ris_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the paths involving RIS ris_paths_tmp : :class:`~sionna.rt.PathsTmpData` Additional data required to compute the EM fields of the paths involving RIS check_scene : bool If set to `True`, checks that the scene is well configured before computing the paths. This can add a significant overhead. Defaults to `True`. scat_random_phases : bool If set to `True` and if scattering is enabled, random uniform phase shifts are added to the scattered paths. Defaults to `True`. Output ------- paths : :class:`~sionna.rt.Paths` Computed paths """ # Check that all is set to compute paths if check_scene: self._check_scene(False) # Compute the fields and merge the paths output = self._solver_paths.compute_fields(spec_paths, diff_paths, scat_paths, ris_paths, spec_paths_tmp, diff_paths_tmp, scat_paths_tmp, ris_paths_tmp, scat_random_phases, testing) sources, targets, paths_as_dict = output[:3] paths = Paths(sources, targets, self) paths.from_dict(paths_as_dict) # If the hidden input flag testing is True, additional data # is returned which is required for some unit tests if testing: spec_tmp_as_dict, diff_tmp_as_dict, scat_tmp_as_dict = output[3:] spec_tmp = PathsTmpData(sources, targets, self._dtype) spec_tmp.from_dict(spec_tmp_as_dict) diff_tmp = PathsTmpData(sources, targets, self._dtype) diff_tmp.from_dict(diff_tmp_as_dict) scat_tmp = PathsTmpData(sources, targets, self._dtype) scat_tmp.from_dict(scat_tmp_as_dict) paths.spec_tmp = spec_tmp paths.diff_tmp = diff_tmp paths.scat_tmp = scat_tmp # Finalize paths computation paths.finalize() return paths def compute_paths(self, max_depth=3, method="fibonacci", num_samples=int(1e6), los=True, reflection=True, diffraction=False, scattering=False, ris=True, scat_keep_prob=0.001, edge_diffraction=False, check_scene=True, scat_random_phases=True, testing=False): # pylint: disable=line-too-long r""" Computes propagation paths This function computes propagation paths between the antennas of all transmitters and receivers in the current scene. For each propagation path :math:`i`, the corresponding channel coefficient :math:`a_i` and delay :math:`\tau_i`, as well as the angles of departure :math:`(\theta_{\text{T},i}, \varphi_{\text{T},i})` and arrival :math:`(\theta_{\text{R},i}, \varphi_{\text{R},i})` are returned. For more detail, see :eq:`H_final`. Different propagation phenomena, such as line-of-sight, reflection, diffraction, and diffuse scattering can be individually enabled/disabled. If the scene is configured to use synthetic arrays (:attr:`~sionna.rt.Scene.synthetic_array` is `True`), transmitters and receivers are modelled as if they had a single antenna located at their :attr:`~sionna.rt.Transmitter.position`. The channel responses for each individual antenna of the arrays are then computed "synthetically" by applying appropriate phase shifts. This reduces the complexity significantly for large arrays. Time evolution of the channel coefficients can be simulated with the help of the function :meth:`~sionna.rt.Paths.apply_doppler` of the returned :class:`~sionna.rt.Paths` object. The path computation consists of two main steps as shown in the below figure. .. figure:: ../figures/compute_paths.svg :align: center For a configured :class:`~sionna.rt.Scene`, the function first traces geometric propagation paths using :meth:`~sionna.rt.Scene.trace_paths`. This step is independent of the :class:`~sionna.rt.RadioMaterial` of the scene objects as well as the transmitters' and receivers' antenna :attr:`~sionna.rt.Antenna.patterns` and :attr:`~sionna.rt.Transmitter.orientation`, but depends on the selected propagation phenomena, such as reflection, scattering, and diffraction. The traced paths are then converted to EM fields by the function :meth:`~sionna.rt.Scene.compute_fields`. The resulting :class:`~sionna.rt.Paths` object can be used to compute channel impulse responses via :meth:`~sionna.rt.Paths.cir`. The advantage of separating path tracing and field computation is that one can study the impact of different radio materials by executing :meth:`~sionna.rt.Scene.compute_fields` multiple times without re-tracing the propagation paths. This can for example speed-up the calibration of scene parameters by several orders of magnitude. Example ------- .. code-block:: Python import sionna from sionna.rt import load_scene, Camera, Transmitter, Receiver, PlanarArray # Load example scene scene = load_scene(sionna.rt.scene.munich) # Configure antenna array for all transmitters scene.tx_array = PlanarArray(num_rows=8, num_cols=2, vertical_spacing=0.7, horizontal_spacing=0.5, pattern="tr38901", polarization="VH") # Configure antenna array for all receivers scene.rx_array = PlanarArray(num_rows=1, num_cols=1, vertical_spacing=0.5, horizontal_spacing=0.5, pattern="dipole", polarization="cross") # Create transmitter tx = Transmitter(name="tx", position=[8.5,21,27], orientation=[0,0,0]) scene.add(tx) # Create a receiver rx = Receiver(name="rx", position=[45,90,1.5], orientation=[0,0,0]) scene.add(rx) # TX points towards RX tx.look_at(rx) # Compute paths paths = scene.compute_paths() # Open preview showing paths scene.preview(paths=paths, resolution=[1000,600]) .. figure:: ../figures/paths_preview.png :align: center Input ------ max_depth : int Maximum depth (i.e., number of bounces) allowed for tracing the paths. Defaults to 3. method : str ("exhaustive"|"fibonacci") Ray tracing method to be used. The "exhaustive" method tests all possible combinations of primitives. This method is not compatible with scattering. The "fibonacci" method uses a shoot-and-bounce approach to find candidate chains of primitives. Initial ray directions are chosen according to a Fibonacci lattice on the unit sphere. This method can be applied to very large scenes. However, there is no guarantee that all possible paths are found. Defaults to "fibonacci". num_samples : int Number of rays to trace in order to generate candidates with the "fibonacci" method. This number is split equally among the different transmitters (when using synthetic arrays) or transmit antennas (when not using synthetic arrays). This parameter is ignored when using the exhaustive method. Tracing more rays can lead to better precision at the cost of increased memory requirements. Defaults to 1e6. los : bool If set to `True`, then the LoS paths are computed. Defaults to `True`. reflection : bool If set to `True`, then the reflected paths are computed. Defaults to `True`. diffraction : bool If set to `True`, then the diffracted paths are computed. Defaults to `False`. scattering : bool If set to `True`, then the scattered paths are computed. If set to `True`, then the scattered paths are computed. Only works with the Fibonacci method. Defaults to `False`. ris : bool If set to `True`, then paths involving RIS are computed. Defaults to `True`. scat_keep_prob : float Probability with which a scattered path is kept. This is helpful to reduce the number of computed scattered paths, which might be prohibitively high in some scenes. Must be in the range (0,1). Defaults to 0.001. edge_diffraction : bool If set to `False`, only diffraction on wedges, i.e., edges that connect two primitives, is considered. Defaults to `False`. check_scene : bool If set to `True`, checks that the scene is well configured before computing the paths. This can add a significant overhead. Defaults to `True`. scat_random_phases : bool If set to `True` and if scattering is enabled, random uniform phase shifts are added to the scattered paths. Defaults to `True`. testing : bool If set to `True`, then additional data is returned for testing. Defaults to `False`. Output ------ :paths : :class:`~sionna.rt.Paths` Simulated paths """ # Trace the paths traced_paths = self.trace_paths(max_depth, method, num_samples, los, reflection, diffraction, scattering, ris, scat_keep_prob, edge_diffraction, check_scene) # Compute the fields and merge the paths # Check scene is not done twice paths = self.compute_fields(*traced_paths, False, scat_random_phases, testing) return paths def coverage_map(self, rx_orientation=(0.,0.,0.), max_depth=3, cm_center=None, cm_orientation=None, cm_size=None, cm_cell_size=(10.,10.), combining_vec=None, precoding_vec=None, num_samples=int(2e6), los=True, reflection=True, diffraction=False, scattering=False, ris=True, edge_diffraction=False, check_scene=True): # pylint: disable=line-too-long r""" This function computes a coverage map for every transmitter in the scene. For a given transmitter, a coverage map is a rectangular surface with arbitrary orientation subdivded into rectangular cells of size :math:`\lvert C \rvert = \texttt{cm_cell_size[0]} \times \texttt{cm_cell_size[1]}`. The parameter ``cm_cell_size`` therefore controls the granularity of the map. The coverage map associates with every cell :math:`(i,j)` the quantity .. math:: :label: cm_def b_{i,j} = \frac{1}{\lvert C \rvert} \int_{C_{i,j}} \lvert h(s) \rvert^2 ds where :math:`\lvert h(s) \rvert^2` is the squared amplitude of the path coefficients :math:`a_i` at position :math:`s=(x,y)`, the integral is over the cell :math:`C_{i,j}`, and :math:`ds` is the infinitesimal small surface element :math:`ds=dx \cdot dy`. The dimension indexed by :math:`i` (:math:`j`) corresponds to the :math:`y\, (x)`-axis of the coverage map in its local coordinate system. For specularly and diffusely reflected paths, :eq:`cm_def` can be rewritten as an integral over the directions of departure of the rays from the transmitter, by substituting :math:`s` with the corresponding direction :math:`\omega`: .. math:: b_{i,j} = \frac{1}{\lvert C \rvert} \int_{\Omega} \lvert h\left(s(\omega) \right) \rvert^2 \frac{r(\omega)^2}{\lvert \cos{\alpha(\omega)} \rvert} \mathbb{1}_{\left\{ s(\omega) \in C_{i,j} \right\}} d\omega where the integration is over the unit sphere :math:`\Omega`, :math:`r(\omega)` is the length of the path with direction of departure :math:`\omega`, :math:`s(\omega)` is the point where the path with direction of departure :math:`\omega` intersects the coverage map, :math:`\alpha(\omega)` is the angle between the coverage map normal and the direction of arrival of the path with direction of departure :math:`\omega`, and :math:`\mathbb{1}_{\left\{ s(\omega) \in C_{i,j} \right\}}` is the function that takes as value one if :math:`s(\omega) \in C_{i,j}` and zero otherwise. Note that :math:`ds = \frac{r(\omega)^2 d\omega}{\lvert \cos{\alpha(\omega)} \rvert}`. The previous integral is approximated through Monte Carlo sampling by shooting :math:`N` rays with directions :math:`\omega_n` arranged as a Fibonacci lattice on the unit sphere around the transmitter, and bouncing the rays on the intersected objects until the maximum depth (``max_depth``) is reached or the ray bounces out of the scene. At every intersection with an object of the scene, a new ray is shot from the intersection which corresponds to either specular reflection or diffuse scattering, following a Bernoulli distribution with parameter the squared scattering coefficient. When diffuse scattering is selected, the direction of the scattered ray is uniformly sampled on the half-sphere. The resulting Monte Carlo estimate is: .. math:: :label: cm_mc_ref \hat{b}_{i,j}^{\text{(ref)}} = \frac{4\pi}{N\lvert C \rvert} \sum_{n=1}^N \lvert h\left(s(\omega_n)\right) \rvert^2 \frac{r(\omega_n)^2}{\lvert \cos{\alpha(\omega_n)} \rvert} \mathbb{1}_{\left\{ s(\omega_n) \in C_{i,j} \right\}}. For the diffracted paths, :eq:`cm_def` can be rewritten for any wedge with length :math:`L` and opening angle :math:`\Phi` as an integral over the wedge and its opening angle, by substituting :math:`s` with the position on the wedge :math:`\ell \in [1,L]` and the angle :math:`\phi \in [0, \Phi]`: .. math:: b_{i,j} = \frac{1}{\lvert C \rvert} \int_{\ell} \int_{\phi} \lvert h\left(s(\ell,\phi) \right) \rvert^2 \mathbb{1}_{\left\{ s(\ell,\phi) \in C_{i,j} \right\}} \left\lVert \frac{\partial r}{\partial \ell} \times \frac{\partial r}{\partial \phi} \right\rVert d\ell d\phi where the integral is over the wedge length :math:`L` and opening angle :math:`\Phi`, and :math:`r\left( \ell, \phi \right)` is the reparametrization with respected to :math:`(\ell, \phi)` of the intersection between the diffraction cone at :math:`\ell` and the rectangle defining the coverage map (see, e.g., [SurfaceIntegral]_). The previous integral is approximated through Monte Carlo sampling by shooting :math:`N'` rays from equally spaced locations :math:`\ell_n` along the wedge with directions :math:`\phi_n` sampled uniformly from :math:`(0, \Phi)`: .. math:: :label: cm_mc_diff \hat{b}_{i,j}^{\text{(diff)}} = \frac{L\Phi}{N'\lvert C \rvert} \sum_{n=1}^{N'} \lvert h\left(s(\ell_n,\phi_n)\right) \rvert^2 \mathbb{1}_{\left\{ s(\ell_n,\phi_n) \in C_{i,j} \right\}} \left\lVert \left(\frac{\partial r}{\partial \ell}\right)_n \times \left(\frac{\partial r}{\partial \phi}\right)_n \right\rVert. The output of this function is therefore a real-valued matrix of size ``[num_cells_y, num_cells_x]``, for every transmitter, with elements equal to the sum of the contributions of the reflected and scattered paths :eq:`cm_mc_ref` and diffracted paths :eq:`cm_mc_diff` for all the wedges, and where .. math:: \texttt{num_cells_x} = \bigg\lceil\frac{\texttt{cm_size[0]}}{\texttt{cm_cell_size[0]}} \bigg\rceil\\ \texttt{num_cells_y} = \bigg\lceil \frac{\texttt{cm_size[1]}}{\texttt{cm_cell_size[1]}} \bigg\rceil. The surface defining the coverage map is a rectangle centered at ``cm_center``, with orientation ``cm_orientation``, and with size ``cm_size``. An orientation of (0,0,0) corresponds to a coverage map parallel to the XY plane, with surface normal pointing towards the :math:`+z` axis. By default, the coverage map is parallel to the XY plane, covers all of the scene, and has an elevation of :math:`z = 1.5\text{m}`. The receiver is assumed to use the antenna array ``scene.rx_array``. If transmitter and/or receiver have multiple antennas, transmit precoding and receive combining are applied which are defined by ``precoding_vec`` and ``combining_vec``, respectively. The :math:`(i,j)` indices are omitted in the following for clarity. For reflection and scattering, paths are generated by shooting ``num_samples`` rays from the transmitters with directions arranged in a Fibonacci lattice on the unit sphere and by simulating their propagation for up to ``max_depth`` interactions with scene objects. If ``max_depth`` is set to 0 and if ``los`` is set to `True`, only the line-of-sight path is considered. For diffraction, paths are generated by shooting ``num_samples`` rays from equally spaced locations along the wedges in line-of-sight with the transmitter, with directions uniformly sampled on the diffraction cone. For every ray :math:`n` intersecting the coverage map cell :math:`(i,j)`, the channel coefficients, :math:`a_n`, and the angles of departure (AoDs) :math:`(\theta_{\text{T},n}, \varphi_{\text{T},n})` and arrival (AoAs) :math:`(\theta_{\text{R},n}, \varphi_{\text{R},n})` are computed. See the `Primer on Electromagnetics <../em_primer.html>`_ for more details. A "synthetic" array is simulated by adding additional phase shifts that depend on the antenna position relative to the position of the transmitter (receiver) as well as the AoDs (AoAs). For the :math:`k^\text{th}` transmit antenna and :math:`\ell^\text{th}` receive antenna, let us denote by :math:`\mathbf{d}_{\text{T},k}` and :math:`\mathbf{d}_{\text{R},\ell}` the relative positions (with respect to the positions of the transmitter/receiver) of the pair of antennas for which the channel impulse response shall be computed. These can be accessed through the antenna array's property :attr:`~sionna.rt.AntennaArray.positions`. Using a plane-wave assumption, the resulting phase shifts from these displacements can be computed as .. math:: p_{\text{T}, n,k} &= \frac{2\pi}{\lambda}\hat{\mathbf{r}}(\theta_{\text{T},n}, \varphi_{\text{T},n})^\mathsf{T} \mathbf{d}_{\text{T},k}\\ p_{\text{R}, n,\ell} &= \frac{2\pi}{\lambda}\hat{\mathbf{r}}(\theta_{\text{R},n}, \varphi_{\text{R},n})^\mathsf{T} \mathbf{d}_{\text{R},\ell}. The final expression for the path coefficient is .. math:: h_{n,k,\ell} = a_n e^{j(p_{\text{T}, i,k} + p_{\text{R}, i,\ell})} for every transmit antenna :math:`k` and receive antenna :math:`\ell`. These coefficients form the complex-valued channel matrix, :math:`\mathbf{H}_n`, of size :math:`\texttt{num_rx_ant} \times \texttt{num_tx_ant}`. Finally, the coefficient of the equivalent SISO channel is .. math:: h_n = \mathbf{c}^{\mathsf{H}} \mathbf{H}_n \mathbf{p} where :math:`\mathbf{c}` and :math:`\mathbf{p}` are the combining and precoding vectors (``combining_vec`` and ``precoding_vec``), respectively. Example ------- .. code-block:: Python import sionna from sionna.rt import load_scene, PlanarArray, Transmitter, Receiver scene = load_scene(sionna.rt.scene.munich) # Configure antenna array for all transmitters scene.tx_array = PlanarArray(num_rows=8, num_cols=2, vertical_spacing=0.7, horizontal_spacing=0.5, pattern="tr38901", polarization="VH") # Configure antenna array for all receivers scene.rx_array = PlanarArray(num_rows=1, num_cols=1, vertical_spacing=0.5, horizontal_spacing=0.5, pattern="dipole", polarization="cross") # Add a transmitters tx = Transmitter(name="tx", position=[8.5,21,30], orientation=[0,0,0]) scene.add(tx) tx.look_at([40,80,1.5]) # Compute coverage map cm = scene.coverage_map(cm_cell_size=[1.,1.], num_samples=int(10e6)) # Visualize coverage in preview scene.preview(coverage_map=cm, resolution=[1000, 600]) .. figure:: ../figures/coverage_map_preview.png :align: center Input ------ rx_orientation : [3], float Orientation of the receiver :math:`(\alpha, \beta, \gamma)` specified through three angles corresponding to a 3D rotation as defined in :eq:`rotation`. Defaults to :math:`(0,0,0)`. max_depth : int Maximum depth (i.e., number of bounces) allowed for tracing the paths. Defaults to 3. cm_center : [3], float | `None` Center of the coverage map :math:`(x,y,z)` as three-dimensional vector. If set to `None`, the coverage map is centered on the center of the scene, except for the elevation :math:`z` that is set to 1.5m. Otherwise, ``cm_orientation`` and ``cm_scale`` must also not be `None`. Defaults to `None`. cm_orientation : [3], float | `None` Orientation of the coverage map :math:`(\alpha, \beta, \gamma)` specified through three angles corresponding to a 3D rotation as defined in :eq:`rotation`. An orientation of :math:`(0,0,0)` or `None` corresponds to a coverage map that is parallel to the XY plane. If not set to `None`, then ``cm_center`` and ``cm_scale`` must also not be `None`. Defaults to `None`. cm_size : [2], float | `None` Size of the coverage map [m]. If set to `None`, then the size of the coverage map is set such that it covers the entire scene. Otherwise, ``cm_center`` and ``cm_orientation`` must also not be `None`. Defaults to `None`. cm_cell_size : [2], float Size of a cell of the coverage map [m]. Defaults to :math:`(10,10)`. combining_vec : [num_rx_ant], complex | None Combining vector. If set to `None`, then no combining is applied, and the energy received by all antennas is summed. precoding_vec : [num_tx_ant], complex | None Precoding vector. If set to `None`, then defaults to :math:`\frac{1}{\sqrt{\text{num_tx_ant}}} [1,\dots,1]^{\mathsf{T}}`. num_samples : int Number of random rays to trace. For the reflected paths, this number is split equally over the different transmitters. For the diffracted paths, it is split over the wedges in line-of-sight with the transmitters such that the number of rays allocated to a wedge is proportional to its length. Defaults to 2e6. los : bool If set to `True`, then the LoS paths are computed. Defaults to `True`. reflection : bool If set to `True`, then the reflected paths are computed. Defaults to `True`. diffraction : bool If set to `True`, then the diffracted paths are computed. Defaults to `False`. scattering : bool If set to `True`, then the scattered paths are computed. Defaults to `False`. ris : bool If set to `True`, then paths involving RIS are computed. Defaults to `True`. edge_diffraction : bool If set to `False`, only diffraction on wedges, i.e., edges that connect two primitives, is considered. Defaults to `False`. check_scene : bool If set to `True`, checks that the scene is well configured before computing the coverage map. This can add a significant overhead. Defaults to `True`. Output ------ :cm : :class:`~sionna.rt.CoverageMap` The coverage maps """ # Check that all is set to compute the coverage map if check_scene: self._check_scene(True) # Check the properties of the rectangle defining the coverage map if ((cm_center is None) and (cm_size is None) and (cm_orientation is None)): # Default value for center: Center of the scene # Default value for the scale: Just enough to cover all the scene # with axis-aligned edges of the rectangle # [min_x, min_y, min_z] scene_min = self._scene.bbox().min scene_min = tf.cast(scene_min, self._rdtype) # In case of empty scene, bbox min is -inf scene_min = tf.where(tf.math.is_inf(scene_min), -tf.ones_like(scene_min), scene_min) # [max_x, max_y, max_z] scene_max = self._scene.bbox().max scene_max = tf.cast(scene_max, self._rdtype) # In case of empty scene, bbox min is inf scene_max = tf.where(tf.math.is_inf(scene_max), tf.ones_like(scene_max), scene_max) cm_center = tf.cast([(scene_min[0] + scene_max[0])*0.5, (scene_min[1] + scene_max[1])*0.5, 1.5], dtype=self._rdtype) cm_size = tf.cast([(scene_max[0] - scene_min[0]), (scene_max[1] - scene_min[1])], dtype=self._rdtype) # Set the orientation to default value cm_orientation = tf.zeros([3], dtype=self._rdtype) elif ((cm_center is None) or (cm_size is None) or (cm_orientation is None)): raise ValueError("If one of `cm_center`, `cm_orientation`,"\ " or `cm_size` is not None, then all of them"\ " must not be None") else: cm_center = tf.cast(cm_center, self._rdtype) cm_orientation = tf.cast(cm_orientation, self._rdtype) cm_size = tf.cast(cm_size, self._rdtype) # Check and initialize the combining and precoding vector if combining_vec is not None: combining_vec = tf.cast(combining_vec, self._dtype) if precoding_vec is None: num_tx = len(self.transmitters) precoding_vec = tf.ones([num_tx, self.tx_array.num_ant], self._dtype) precoding_vec /= tf.sqrt(tf.cast(self.tx_array.num_ant, self._dtype)) else: precoding_vec = tf.cast(precoding_vec, self._dtype) precoding_vec = expand_to_rank(precoding_vec, 2, 0) # [3] rx_orientation = tf.cast(rx_orientation, self._rdtype) # Compute the coverage map using the solver # [num_sources, num_cells_x, num_cells_y] output = self._solver_cm(max_depth=max_depth, rx_orientation=rx_orientation, cm_center=cm_center, cm_orientation=cm_orientation, cm_size=cm_size, cm_cell_size=cm_cell_size, combining_vec=combining_vec, precoding_vec=precoding_vec, num_samples=num_samples, los=los, reflection=reflection, diffraction=diffraction, scattering=scattering, ris=ris, edge_diffraction=edge_diffraction) return output def preview(self, paths=None, show_paths=True, show_devices=True, show_orientations=False, coverage_map=None, cm_tx=0, cm_db_scale=True, cm_vmin=None, cm_vmax=None, resolution=(655, 500), fov=45, background='#ffffff', clip_at=None, clip_plane_orientation=(0, 0, -1)): # pylint: disable=line-too-long r"""preview(paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_vmin=None, cm_vmax=None, resolution=(655, 500), fov=45, background='#ffffff', clip_at=None, clip_plane_orientation=(0, 0, -1)) In an interactive notebook environment, opens an interactive 3D viewer of the scene. The returned value of this method must be the last line of the cell so that it is displayed. For example: .. code-block:: Python fig = scene.preview() # ... fig Or simply: .. code-block:: Python scene.preview() Default color coding: * Green: Receiver * Blue: Transmitter * Red: Reconfigurable Intelligent Surface (RIS) Controls: * Mouse left: Rotate * Scroll wheel: Zoom * Mouse right: Move Input ----- paths : :class:`~sionna.rt.Paths` | `None` Simulated paths generated by :meth:`~sionna.rt.Scene.compute_paths()` or `None`. If `None`, only the scene is rendered. Defaults to `None`. show_paths : bool If `paths` is not `None`, shows the paths. Defaults to `True`. show_devices : bool If set to `True`, shows the radio devices. Defaults to `True`. show_orientations : bool If `show_devices` is `True`, shows the radio devices orientations. Defaults to `False`. coverage_map : :class:`~sionna.rt.CoverageMap` | `None` An optional coverage map to overlay in the scene for visualization. Defaults to `None`. cm_tx : int | str When `coverage_map` is specified, controls which of the transmitters to display the coverage map for. Either the transmitter's name or index can be given. Defaults to `0`. cm_db_scale: bool Use logarithmic scale for coverage map visualization, i.e. the coverage values are mapped with: :math:`y = 10 \cdot \log_{10}(x)`. Defaults to `True`. cm_vmin, cm_vmax: floot | None For coverage map visualization, defines the range of path gains that the colormap covers. These parameters should be provided in dB if ``cm_db_scale`` is set to `True`, or in linear scale otherwise. If set to None, then covers the complete range. Defaults to `None`. resolution : [2], int Size of the viewer figure. Defaults to `[655, 500]`. fov : float Field of view, in degrees. Defaults to 45°. background : str Background color in hex format prefixed by '#'. Defaults to '#ffffff' (white). clip_at : float If not `None`, the scene preview will be clipped (cut) by a plane with normal orientation ``clip_plane_orientation`` and offset ``clip_at``. That means that everything *behind* the plane becomes invisible. This allows visualizing the interior of meshes, such as buildings. Defaults to `None`. clip_plane_orientation : tuple[float, float, float] Normal vector of the clipping plane. Defaults to (0,0,-1). """ if (self._preview_widget is not None) and (resolution is not None): assert isinstance(resolution, (tuple, list)) and len(resolution) == 2 if tuple(resolution) != self._preview_widget.resolution(): # User requested a different rendering resolution, create # a new viewer from scratch to match it. self._preview_widget = None # Cache the render widget so that we don't need to re-create it # every time fig = self._preview_widget needs_reset = fig is not None if needs_reset: fig.reset() else: fig = InteractiveDisplay(scene=self, resolution=resolution, fov=fov, background=background) self._preview_widget = fig # Show paths and devices, if required if show_paths and (paths is not None): fig.plot_paths(paths) if show_devices: fig.plot_radio_devices(show_orientations=show_orientations) fig.plot_ris() if coverage_map is not None: fig.plot_coverage_map( coverage_map, tx=cm_tx, db_scale=cm_db_scale, vmin=cm_vmin, vmax=cm_vmax) # Clipping fig.set_clipping_plane(offset=clip_at, orientation=clip_plane_orientation) # Update the camera state if not needs_reset: fig.center_view() return fig def render(self, camera, paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_db_scale=True, cm_vmin=None, cm_vmax=None, cm_show_color_bar=True, num_samples=512, resolution=(655, 500), fov=45): # pylint: disable=line-too-long r"""render(camera, paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_vmin=None, cm_vmax=None, cm_show_color_bar=True, num_samples=512, resolution=(655, 500), fov=45) Renders the scene from the viewpoint of a camera or the interactive viewer Input ------ camera : str | :class:`~sionna.rt.Camera` The name or instance of a :class:`~sionna.rt.Camera`. If an interactive viewer was opened with :meth:`~sionna.rt.Scene.preview()`, set to `"preview"` to use its viewpoint. paths : :class:`~sionna.rt.Paths` | `None` Simulated paths generated by :meth:`~sionna.rt.Scene.compute_paths()` or `None`. If `None`, only the scene is rendered. Defaults to `None`. show_paths : bool If `paths` is not `None`, shows the paths. Defaults to `True`. show_devices : bool If `paths` is not `None`, shows the radio devices. Defaults to `True`. coverage_map : :class:`~sionna.rt.CoverageMap` | `None` An optional coverage map to overlay in the scene for visualization. Defaults to `None`. cm_tx : int | str When `coverage_map` is specified, controls which of the transmitters to display the coverage map for. Either the transmitter's name or index can be given. Defaults to `0`. cm_db_scale: bool Use logarithmic scale for coverage map visualization, i.e. the coverage values are mapped with: :math:`y = 10 \cdot \log_{10}(x)`. Defaults to `True`. cm_vmin, cm_vmax: float | None For coverage map visualization, defines the range of path gains that the colormap covers. These parameters should be provided in dB if ``cm_db_scale`` is set to `True`, or in linear scale otherwise. If set to None, then covers the complete range. Defaults to `None`. cm_show_color_bar: bool For coverage map visualization, show the color bar describing the color mapping used next to the rendering. Defaults to `True`. num_samples : int Number of rays thrown per pixel. Defaults to 512. resolution : [2], int Size of the rendered figure. Defaults to `[655, 500]`. fov : float Field of view, in degrees. Defaults to 45°. Output ------- : :class:`~matplotlib.pyplot.Figure` Rendered image """ image = render(scene=self, camera=camera, paths=paths, show_paths=show_paths, show_devices=show_devices, coverage_map=coverage_map, cm_tx=cm_tx, cm_db_scale=cm_db_scale, cm_vmin=cm_vmin, cm_vmax=cm_vmax, num_samples=num_samples, resolution=resolution, fov=fov) to_show = image.convert(component_format=mi.Struct.Type.UInt8, srgb_gamma=True) show_color_bar = (coverage_map is not None) and cm_show_color_bar if show_color_bar: aspect = image.width()*1.06 / image.height() fig, ax = plt.subplots(1, 2, gridspec_kw={'width_ratios': [0.97, 0.03]}, figsize=(aspect * 6, 6)) im_ax = ax[0] else: aspect = image.width() / image.height() fig, ax = plt.subplots(1, 1, figsize=(aspect * 6, 6)) im_ax = ax im_ax.imshow(to_show) if show_color_bar: _, normalizer, color_map = coverage_map_color_mapping( coverage_map[cm_tx, :, :].numpy(), db_scale=cm_db_scale, vmin=cm_vmin, vmax=cm_vmax) mappable = matplotlib.cm.ScalarMappable( norm=normalizer, cmap=color_map) cax = ax[1] cax.set_title('dB') fig.colorbar(mappable, cax=cax) # Remove axes and margins im_ax.axis('off') fig.tight_layout() return fig def render_to_file(self, camera, filename, paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_db_scale=True, cm_vmin=None, cm_vmax=None, num_samples=512, resolution=(655, 500), fov=45): # pylint: disable=line-too-long r"""render_to_file(camera, filename, paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_db_scale=True, cm_vmin=None, cm_vmax=None, num_samples=512, resolution=(655, 500), fov=45) Renders the scene from the viewpoint of a camera or the interactive viewer, and saves the resulting image Input ------ camera : str | :class:`~sionna.rt.Camera` The name or instance of a :class:`~sionna.rt.Camera`. If an interactive viewer was opened with :meth:`~sionna.rt.Scene.preview()`, set to `"preview"` to use its viewpoint. filename : str Filename for saving the rendered image, e.g., "my_scene.png" paths : :class:`~sionna.rt.Paths` | `None` Simulated paths generated by :meth:`~sionna.rt.Scene.compute_paths()` or `None`. If `None`, only the scene is rendered. Defaults to `None`. show_paths : bool If `paths` is not `None`, shows the paths. Defaults to `True`. show_devices : bool If `paths` is not `None`, shows the radio devices. Defaults to `True`. coverage_map : :class:`~sionna.rt.CoverageMap` | `None` An optional coverage map to overlay in the scene for visualization. Defaults to `None`. cm_tx : int | str When `coverage_map` is specified, controls which of the transmitters to display the coverage map for. Either the transmitter's name or index can be given. Defaults to `0`. cm_db_scale: bool Use logarithmic scale for coverage map visualization, i.e. the coverage values are mapped with: :math:`y = 10 \cdot \log_{10}(x)`. Defaults to `True`. cm_vmin, cm_vmax: float | None For coverage map visualization, defines the range of path gains that the colormap covers. These parameters should be provided in dB if ``cm_db_scale`` is set to `True`, or in linear scale otherwise. If set to None, then covers the complete range. Defaults to `None`. num_samples : int Number of rays thrown per pixel. Defaults to 512. resolution : [2], int Size of the rendered figure. Defaults to `[655, 500]`. fov : float Field of view, in degrees. Defaults to 45°. """ image = render(scene=self, camera=camera, paths=paths, show_paths=show_paths, show_devices=show_devices, coverage_map=coverage_map, cm_tx=cm_tx, cm_db_scale=cm_db_scale, cm_vmin=cm_vmin, cm_vmax=cm_vmax, num_samples=num_samples, resolution=resolution, fov=fov) ext = os.path.splitext(filename)[1].lower() if ext in ('.jpg', '.jpeg', '.ppm',): image = image.convert(component_format=mi.Struct.Type.UInt8, pixel_format=mi.Bitmap.PixelFormat.RGB, srgb_gamma=True) elif ext in ('.png', '.tga' '.bmp'): image = image.convert(component_format=mi.Struct.Type.UInt8, srgb_gamma=True) image.write(filename) @property def radio_material_callable(self): # pylint: disable=line-too-long r""" Get/set a callable that computes the radio material properties at the points of intersection between the rays and the scene objects. If set, then the :class:`~sionna.rt.RadioMaterial` of the objects are not used and the callable is invoked instead to obtain the electromagnetic properties required to simulate the propagation of radio waves. If not set, i.e., `None` (default), then the :class:`~sionna.rt.RadioMaterial` of objects are used to simulate the propagation of radio waves in the scene. This callable is invoked on batches of intersection points. It takes as input the following tensors: * ``object_id`` (`[batch_dims]`, `int`) : Integers uniquely identifying the intersected objects * ``points`` (`[batch_dims, 3]`, `float`) : Positions of the intersection points The callable must output a tuple/list of the following tensors: * ``complex_relative_permittivity`` (`[batch_dims]`, `complex`) : Complex relative permittivities :math:`\eta` :eq:`eta` * ``scattering_coefficient`` (`[batch_dims]`, `float`) : Scattering coefficients :math:`S\in[0,1]` :eq:`scattering_coefficient` * ``xpd_coefficient`` (`[batch_dims]`, `float`) : Cross-polarization discrimination coefficients :math:`K_x\in[0,1]` :eq:`xpd`. Only relevant for the scattered field. **Note:** The number of batch dimensions is not necessarily equal to one. """ return self._radio_material_callable @radio_material_callable.setter def radio_material_callable(self, rm_callable): self._radio_material_callable = rm_callable @property def scattering_pattern_callable(self): # pylint: disable=line-too-long r""" Get/set a callable that computes the scattering pattern at the points of intersection between the rays and the scene objects. If set, then the :attr:`~sionna.rt.RadioMaterial.scattering_pattern` of the radio materials of the objects are not used and the callable is invoked instead to evaluate the scattering pattern required to simulate the propagation of diffusely reflected radio waves. If not set, i.e., `None` (default), then the :attr:`~sionna.rt.RadioMaterial.scattering_pattern` of the objects' radio materials are used to simulate the propagation of diffusely reflected radio waves in the scene. This callable is invoked on batches of intersection points. It takes as input the following tensors: * ``object_id`` (`[batch_dims]`, `int`) : Integers uniquely identifying the intersected objects * ``points`` (`[batch_dims, 3]`, `float`) : Positions of the intersection points * ``k_i`` (`[batch_dims, 3]`, `float`) : Unitary vector corresponding to the direction of incidence in the scene's global coordinate system * ``k_s`` (`[batch_dims, 3]`, `float`) : Unitary vector corresponding to the direction of the diffuse reflection in the scene's global coordinate system * ``n`` (`[batch_dims, 3]`, `float`) : Unitary vector corresponding to the normal to the surface at the intersection point The callable must output the following tensor: * ``f_s`` (`[batch_dims]`, `float`) : The scattering pattern evaluated for the previous inputs **Note:** The number of batch dimensions is not necessarily equal to one. """ return self._scattering_pattern_callable @scattering_pattern_callable.setter def scattering_pattern_callable(self, sp_callable): self._scattering_pattern_callable = sp_callable ############################################## # Internal methods. # Should not be appear in the user # documentation ############################################## @property def mi_scene(self): """ :class:`~mitsuba.Scene` : Get the Mitsuba scene """ return self._scene @property def mi_scene_params(self): """ :class:`~mitsuba.SceneParameters` : Get the Mitsuba scene parameters """ return self._scene_params @property def solver_paths(self): """ :class:`~sionna.rt.SolverPaths` : Get the paths solver """ return self._solver_paths @property def solver_cm(self): """ :class:`~sionna.rt.SolverCoverageMap` : Get the coverage map solver """ return self._solver_cm @property def preview_widget(self): """ :class:`~sionna.rt.InteractiveDisplay` : Get the preview widget """ return self._preview_widget
[docs] def scene_geometry_updated(self): """ Callback to trigger when the scene geometry is updated """ # Update the scene geometry in the preview if self._preview_widget: self._preview_widget.redraw_scene_geometry()
def _clear(self): r""" Clear everything. Should be called when a new scene is loaded. """ self._transmitters.clear() self._receivers.clear() self._ris.clear() self._ris.clear() self._cameras.clear() self._radio_materials.clear() self._scene_objects.clear() self._tx_array = None self._rx_array = None self._preview_widget = None def _check_scene(self, coverage_map): r""" Check that all is set for paths or coverage map computation. If not, raises an exception with the appropriate error message. Input ------ coverage_map : bool If set to `True`, then checks the scene in preparation for coverage map computation. Otherwise, checks the scene in preparation for paths computation. """ if not self._rx_array: raise ValueError("Receiver array not set.") if not self._tx_array: raise ValueError("Transmitter array not set.") if len(self._transmitters) == 0: raise ValueError("No transmitter defined.") # Instantiation of receivers is not needed to compute a coverage map if not coverage_map: if len(self._receivers) == 0: raise ValueError("No receiver defined.") # Check that all scene objects have a radio material for obj in self.objects.values(): mat = obj.radio_material if mat is None: msg = f"Scene object {obj.name} has no material set." raise ValueError(msg) else: # Check that the material is well-defined if not mat.well_defined: msg = f"Material '{mat.name}' is used by the object "\ f" '{obj.name}' but is not well-defined." raise ValueError(msg) # Check that the material is not a placeholder if mat.is_placeholder: msg = f"Material '{mat.name}' is used by the object "\ f" '{obj.name}' but not defined." raise ValueError(msg) def _load_cameras(self): """ Load the camera(s) available in the scene """ for i, mi_cam in enumerate(self._scene.sensors()): # Extract the transformation paramters transform = mi.traverse(mi_cam)['to_world'] position = Camera.world_to_position(transform) orientation = Camera.world_to_angles(transform) # Create the camera name = f"scene-cam-{i}" new_cam = Camera(name=name, position=position, orientation=orientation) new_cam.scene = self self._cameras[name] = new_cam def _load_scene_objects(self): """ Load the scene objects available in the scene """ # Parse all shapes in the scene scene = self._scene objects_id = dr.reinterpret_array_v(mi.UInt32, scene.shapes_dr()).tf() for obj_id,s in zip(objects_id,scene.shapes()): obj_id = int(obj_id.numpy()) # Only meshes are handled if not isinstance(s, mi.Mesh): raise TypeError('Only triangle meshes are supported') # Setup the material mat_name = s.bsdf().id() if mat_name.startswith("mat-"): mat_name = mat_name[4:] mat = self.get(mat_name) if (mat is not None) and (not isinstance(mat, RadioMaterial)): raise ValueError(f"Name'{name}' already used by another item") elif mat is None: # If the radio material does not exist, then a placeholder is # used. mat = RadioMaterial(mat_name) mat.is_placeholder = True self._radio_materials[mat_name] = mat # Instantiate the scene objects name = s.id() if name.startswith('mesh-'): name = name[5:] if self._is_name_used(name): raise ValueError(f"Name'{name}' already used by another item") obj = SceneObject(name, object_id=obj_id, mi_shape=s, dtype=self._dtype) obj.scene = self obj.radio_material = mat_name self._scene_objects[name] = obj def _is_name_used(self, name): """ Returns `True` if ``name`` is used by a scene object, a transmitter, or a receiver. """ used = ((name in self._transmitters) or (name in self._receivers) or (name in self._radio_materials) or (name in self._scene_objects)) return used
[docs]def load_scene(filename=None, dtype=tf.complex64): # pylint: disable=line-too-long r""" Load a scene from file Note that only one scene can be loaded at a time. Input ----- filename : str Name of a valid scene file. Sionna uses the simple XML-based format from `Mitsuba 3 <https://mitsuba.readthedocs.io/en/stable/src/key_topics/scene_format.html>`_. Defaults to `None` for which an empty scene is created. dtype : tf.complex Dtype used for all internal computations and outputs. Defaults to `tf.complex64`. Output ------ scene : :class:`~sionna.rt.Scene` Reference to the current scene """ # Create empty scene using the reserved filename "__empty__" if filename is None: filename = "__empty__" return Scene(filename, dtype=dtype)
# # Module variables for example scene files # floor_wall = str(files(scenes).joinpath("floor_wall/floor_wall.xml")) # pylint: disable=C0301 """ Example scene containing a ground plane and a vertical wall .. figure:: ../figures/floor_wall.png :align: center """ # pylint: disable=C0301 simple_street_canyon = str(files(scenes).joinpath("simple_street_canyon/simple_street_canyon.xml")) """ Example scene containing a few rectangular building blocks and a ground plane .. figure:: ../figures/street_canyon.png :align: center """ # pylint: disable=C0301 simple_street_canyon_with_cars = str(files(scenes).joinpath("simple_street_canyon_with_cars/simple_street_canyon_with_cars.xml")) """ Example scene containing a few rectangular building blocks and a ground plane as well as some cars .. figure:: ../figures/street_canyon_with_cars.png :align: center """ etoile = str(files(scenes).joinpath("etoile/etoile.xml")) # pylint: disable=C0301 """ Example scene containing the area around the Arc de Triomphe in Paris The scene was created with data downloaded from `OpenStreetMap <https://www.openstreetmap.org>`_ and the help of `Blender <https://www.blender.org>`_ and the `Blender-OSM <https://github.com/vvoovv/blender-osm>`_ and `Mitsuba Blender <https://github.com/mitsuba-renderer/mitsuba-blender>`_ add-ons. The data is licensed under the `Open Data Commons Open Database License (ODbL) <https://openstreetmap.org/copyright>`_. .. figure:: ../figures/etoile.png :align: center """ munich = str(files(scenes).joinpath("munich/munich.xml")) # pylint: disable=C0301 """ Example scene containing the area around the Frauenkirche in Munich The scene was created with data downloaded from `OpenStreetMap <https://www.openstreetmap.org>`_ and the help of `Blender <https://www.blender.org>`_ and the `Blender-OSM <https://github.com/vvoovv/blender-osm>`_ and `Mitsuba Blender <https://github.com/mitsuba-renderer/mitsuba-blender>`_ add-ons. The data is licensed under the `Open Data Commons Open Database License (ODbL) <https://openstreetmap.org/copyright>`_. .. figure:: ../figures/munich.png :align: center """ simple_wedge = str(files(scenes).joinpath("simple_wedge/simple_wedge.xml")) # pylint: disable=C0301 r""" Example scene containing a wedge with a :math:`90^{\circ}` opening angle .. figure:: ../figures/simple_wedge.png :align: center """ simple_reflector = str(files(scenes).joinpath("simple_reflector/simple_reflector.xml")) # pylint: disable=C0301 r""" Example scene containing a metallic square .. figure:: ../figures/simple_reflector.png :align: center """ double_reflector = str(files(scenes).joinpath("double_reflector/double_reflector.xml")) # pylint: disable=C0301 r""" Example scene containing two metallic squares .. figure:: ../figures/double_reflector.png :align: center """ triple_reflector = str(files(scenes).joinpath("triple_reflector/triple_reflector.xml")) # pylint: disable=C0301 r""" Example scene containing three metallic rectangles .. figure:: ../figures/triple_reflector.png :align: center """ box = str(files(scenes).joinpath("box/box.xml")) # pylint: disable=C0301 r""" Example scene containing a metallic box .. figure:: ../figures/box.png :align: center """